
BBA+: Improving the Security and Applicability of
Privacy-Preserving Point Collection

Gunnar Hartung
∗

Karlsruhe Institute of Technology

Department of Informatics

Am Fasanengarten 5

76131, Karlsruhe, Germany

gunnar.hartung@kit.edu

Max Hoffmann
†

Ruhr-Universität Bochum

Department of Electrical Engineering and Information

Technology

Universitätsstraße 150

44801, Bochum, Germany

max.hoffmann@rub.de

Matthias Nagel
‡

Karlsruhe Institute of Technology

Department of Informatics

Am Fasanengarten 5

76131, Karlsruhe, Germany

matthias.nagel@kit.edu

Andy Rupp
§

Karlsruhe Institute of Technology

Department of Informatics

Am Fasanengarten 5

76131, Karlsruhe, Germany

andy.rupp@kit.edu

ABSTRACT
Black-box accumulation (BBA) was introduced at PETS 2016 as a

promising building-block for a variety of user-centric protocols

such as loyalty, refund, and incentive systems. Loosely speaking,

this building block may be viewed as a cryptographic “piggy bank”

that allows a user to collect points (aka incentives, coins, etc.) in an

anonymous and unlinkable way. A piggy bank may be “robbed” at

some point by a user, letting her spent the collected points, thereby

only revealing the total amount inside the piggy bank and a serial

number, which is linked to the owner.

In this paper we present BBA+, a definitional framework extend-

ing the BBA model in multiple ways: (1) We support offline systems

in the sense that there does not need to be a permanent connection

to a serial number database to check whether a presented piggy

bank has already been robbed. (2) We enforce the collection of

“negative points”, i.e., points users may not voluntarily collect, as

this is for example needed in post- or pre-payment systems. (3)

The security property formalized for BBA+ schemes is stronger and

more natural than for BBA: Essentially, we demand that the amount

claimed to be inside a piggy bank must be exactly the amount legit-

imately collected with this piggy bank. As piggy bank transactions

need to be unlinkable at the same time, defining this property is

highly non-trivial. (4) We also define a stronger form of privacy,

namely forward and backward privacy.

Besides the framework, we show how to construct a BBA+ sys-

tem from cryptographic building blocks. A security and privacy

∗
The project underlying this report was supported by the German Federal Ministry

of Education and Research under Grant No. 01|S15035A. The responsibility for this

contents of this publication lies with the author.

†
The author is supported by DFG grant PA 587/10-1.

‡
This work was supported by the German Federal Ministry of Education and Research

within the framework of the project “Sicherheit vernetzter Infrastrukturen (SVI)” in

the Competence Center for Applied Security Technology (KASTEL).

§
The author is supported by DFG grant RU 1664/3-1 and the Competence Center for

Applied Security Technology (KASTEL).

proof for the proposed scheme is given within our model. Addi-

tionally, we present the promising results of a smartphone-based

prototypical implementation. They show that our current imple-

mentation may already be useable in practice, allowing to run

transactions within a second—while we have not exhausted the

potential for optimizations.

CCS CONCEPTS
• Security and privacy → Distributed systems security; Public
key encryption; • Applied computing → Digital cash; Electronic
funds transfer; Secure online transactions;

KEYWORDS
Customer Loyalty Programs, Incentive Systems, Stored-Value Pay-

ments, Black-Box Accumulation.

1 INTRODUCTION
In numerous user-centric cyber-physical systems, point collection

and redemption mechanisms are one of the core components.

One of the most canonical examples are loyalty systems like

the German Payback system [32] or the UK-based Nectar program

[4]. Users may collect points at ervery purchase for being loyal

customers, and these points can be redeemed at some point in

exchange for vouchers, services, or other benefits.

In fact, many other cyber-physical systems try to incentify a

certain behavior of users by means of similar mechanisms. For

instance, in envisioned mobile sensing scenarios, users need to be

encouraged to collect environmental or health data measured with

their smart devices and provide this data (enhanced by location-time

information) to some operator. In exchange, users will, e.g., receive

micropayments they can later use to pay for services provided based

on the collected data. In Vehicle-2-Grid scenarios, e-car owners need

to be rewarded for the power their e-car batteries provide to the

Smart Grid when cars are left at the mall, office, etc.

1

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

In [23] Jager and Rupp formalized the core functional, security,

and privacy requirements of a building block to realize the kind

of systems described above. Their building block, called black-box

accumulation (BBA), consists of various non-interactive algorithms.

When executed correctly by legitimate parties, it allows a user to

collect positive points (representing incentives) in an anonymous

and unlinkable fashion. Obtaining and redeeming a BBA token is

a linkable operation as the unique serial number of the token is

revealed in both operations. A permanent connection to a database

containing serial numbers of tokens already redeemed is required

to prevent double-redemption (aka double-spending) of tokens.

Hence, BBA schemes are online systems. Unfortunately, the authors

formalized a rather weak form of security, by only demanding that a

collusion of malicious users may not be able to redeem more points

than the total amount of points issued. In particular, this does not

rule out that users may transfer points arbitrarily between tokens

(without help) or that an “old” copy of a token is redeemed (i.e., not

holding the most current balance).

To summarize, BBA suffers from a number of serious restrictions

including fairly weak security guarantees, the need of a permanent

database connection, the lack of mechanisms to enforce the collec-

tion of “negative” points, and the linkability of token creation and

redemption. These shortcomings limit the applicability of BBA as a

building block in user-centric systems.

For instance, loyalty system providers do not want their cus-

tomers to pool or trade their points, which is, however, not ex-

cluded by the BBA security definition. Moreover, customers should

be allowed to partially redeem collected points. To realize this fea-

ture with a BBA scheme, one would need to redeem all points on a

token, create a new one, and charge it with the remaining (unspent)

points. However, in this way all partial redemptions of a customer

are linkable.

Another application requiring features beyond BBA are anony-

mous reputation systems where a central authority rates the be-

havior, reliability, or activity of users by issuing reputation points.

Similar to loyalty systems, it is undesirable that users are able to

pool or trade their reputation points. Additionally, it might be use-

ful in some scenarios to be also able to issue negative reputation

points either by subtracting points or having a separate counter for

negative ratings.

Yet another application where stronger security, offline capabil-

ities, and negative points are beneficial are pre- or post-payment

systems. These systems are employed in many domains like public

transportation, toll collection, cashless canteen systems, etc. Typ-

ically, in practice, such payment systems are implemented using

simplistic RFID-transponder or smartcard-based solutions like the

Mifare Classic [29], which essentially offers no security and privacy

at all ([15, 18, 19] and more), or the Mifare Desfire [30, 31] also

allowing to link all transactions.

1.1 Our Contribution
Definitional framework. We present the BBA+ framework

which significantly strengthens the security and broadens the ap-

plicability of black-box accumulation compared to [23]: Our frame-

work considers interactive algorithms (protocols) which leads to

more intuitive definitions and broadens the class of possible instan-

tiations. Our framework also supports the collection of negative

points, and a mechanism to identify users who present an old ver-

sion of their token (possibly having a higher balance than their

most recent one).

We define a strong form of privacy, namely forward and back-

ward privacy: An adversary, including the system operator, must

not be able to link transactions of an honest user. This even needs

to hold for transactions preceding and succeeding a corruption

(except the very next) of the user, during which all of his secrets

leak to the adversary. The set of unlinkable transactions not only

includes accumulation but also point redemption.

Moreover, we formalize a stronger security property which cap-

tures the natural notion that the claimed balance of a token should

be exactly the amount legitimately collected with this token. Note

that due to the strong privacy property that needs to be satisfied at

the same time, defining security is highly-nontrivial. We resolve

this issue by demanding that privacy can be removed by a secret

trapdoor held by a trusted third party or shared by a couple of

semi-trusted parties.

Details on our framework are given in Section 4.

Construction. We propose an instantiation satisfying the prop-

erties sketched above. This scheme is a semi-generic construction

using public-key encryption, homomorphic trapdoor commitments,

digital signatures, and Groth-Sahai non-interactive zero-knowledge

proofs over bilinear groups for which the SXDH assumption holds.

To achieve freshness of tokens, we draw from techniques typi-

cally used in offline e-cash systems, namely double-spending tags.

Here, some double-spending tag, e.g., t := id · c + r mod p, needs
to be revealed when spending an e-coin. This tag contains some

user identity information id which is blinded by some secret user

randomness r (which has been fixed when the coin was issued)

and involves a challenge c freshly chosen by a merchant. No in-

formation about id is revealed when the coin is spent once (as r is
uniform). However, when the coin is spent a second time, a different

challenge c ′ will be used, while the user randomness r will be the
same (because it has been fixed). This enables the bank to extract

id using the two double-spending tags t and t ′.
Let us briefly sketch our construction which follows but signif-

icantly extends the idea of [23]. For the sake of simplicity, each

user may only receive a single token bound to his public key. An

initial token essentially consists of a (multi-)commitment c and a

signature σ on this commitment issued by the system operator. The

commitment c contains a user’s secret key skU , a token version

number s , the balance valuew = 0, and some randomness r that will
be used to generate a double-spending tag in the next transaction.

Note that s and r are not known to the issuer but c and σ are.

To add (positive or negative) points in an unlinkable fashion, one

cannot simply sent over the token. Instead, the user sents a new

commitment c ′ containing the same secret key, the same balance,

but a new token version number, and some new randomness. Then

he proves in zero-knowledge that c ′ is indeed new version of his

old certified commitment c . Additionally, a double-spending tag

(encoding skU) for the old token version as well as s is revealed. If
the party issuing the points accepts the proof, the homomorphic

2

BBA+: Improving Privacy-Preserving Point Collection , ,

property of the commitment scheme is used to add the points to c ′

which is then signed.

This concludes the simplified description of our construction.

More details can be found in Section 5.

Implementation. To verify the suitability of our construction

in real-world applications, we built a smartphone implementation

and benchmarked the execution times of the BBA+ protocols. Our

implementation results (for 254-bit Barreto-Naehrig curves with

optimal Ate pairing) show that all protocols can be executed in

less than 400 ms on the user side. This leads to the conclusion

that our cheme is already usable in practice. Nevertheless, further

optimizations are possible at both the algorithmic, as well as the

implementation level. Details can be found in Section 6. Note that

the authors of BBA [23] only provide rough performance estimates

for their scheme.

1.2 Related Work
Besides BBA [23], which we already discussed, only [27] appears to

consider a point collection mechanism as a separate, multi-purpose

building block. Unfortunately, the security and privacy properties

of their protocol – called uCentive – are only informally stated and

no proofs are given.

The BBA+ framework shares some aspects with the notion of

priced oblivious transfer (POT). POT was introduced by [3] as a tool

to protect the privacy of customers buying digital goods. The goal

is to allow a buyer to purchase digital goods from a vendor without

leaking the “what, when and how much”. In the original notion of

POT, a user’s wallet is not possessed by the user itself. In [3] the

vendor manages this information. Consequently, user anonymity

cannot be granted and the system is inherently limited to a single

vendor. Camenisch et al. [12] extended POTs by anonymity of users

and unlinkability of individual transactions which brings it closer to

our framework. Nonetheless, the scheme is still limited to a single

vendor or a system where all vendors share a joint state in an online

fashion, whereas our system is an offline system. Moreover, [12]

lacks a full rigorous formal treatment and an implementation.

The techniques we use to instantiate our building block bear

some resemblance with P-signatures [7, 22] which have been in-

troduced by [7] as a tool to construct anonymous credentials. A

P-signature scheme is a two-party scheme between a user and

an issuer. The scheme combines the algorithms of a commitment

scheme, a signature scheme and extends them by some additional

zero-knowledge protocols that allow the user to prove certain state-

ments about the commitments. More precisely a user can gener-

ate commitments to messages. He can ask the issuer to sign the

original message inside the commitment using the issuer’s secret

key without the issuer learning this message. Moreover, the user

can generate new commitments and prove the equality of their

content or that he knows a valid signature on the message inside

a commitment. The scheme in [7] builds on weak Boneh-Boyen

signatures [10], Groth-Sahai commitments and Groth-Sahai NIZK

proofs [20]. Note that for our building block properties beyond

that of a P-signature are needed. For instance, we need to prove

additional/different statements about the content of our commit-

ments. Also, users need to be able to obtain new signatures on

commitments homomorphically modified by the issuer. Moreover,

we build on different signatures and commitments.

2 PRELIMINARIES
Wewill make use of the common notation to describe cryptographic

schemes and define their security properties.

The results of this paper are in the setting of asymmetric bi-

linear groups. We use the following definition of a bilinear group

generator.

Definition 2.1 (prime-order bilinear group generator). A prime-
order bilinear group generator is a PPT algorithm SetupGrp that on

input of a security parameter 1
n
outputs a tuple of the form

gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)

where G1,G2,GT are descriptions of cyclic groups of prime order

p, logp = Θ(n), д1 is a generator of G1, д2 is a generator of G2,

and e : G1 ×G2 → GT is a map (aka pairing) which satisfies the

following properties:

• e is efficiently computable

• Bilinearity: For all a ∈ G1,b ∈ G2, x ∈ Zp , we have

e(ax ,b) = e(a,bx) = e(a,b)x .
• Non-Degeneracy: e(д1,д2) generates GT .

Complexity assumptions. Our construction relies on the SXDH
assumption in bilinear groups, which essentially asserts that the

DDH assumption holds in both source groups of the bilinear map.

Definition 2.2. We say that the DDH assumption holds with

respect to SetupGrp over Gi if the advantage AdvDDHSetupGrp,i ,A (1
n)

defined by

Pr

b = b ′
������

gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)
x,y, z ← Zp ;h0 := д

xy
i ;h1 := д

z
i ;b ← {0, 1}

b ′ ← A(1n, gp,дxi ,д
y
i ,hb)


is a negligible function in n for all PPT algorithms A. We say that

the SXDH assumption holds with respect to SetupGrp if the above

holds for both i = 1 and i = 2.

We also make use of the Co-CDH assumption which is obviously

implied by the SXDH assumption.

Definition 2.3. We say that the Co-CDH assumption holds with

respect to SetupGrp if the advantage AdvCO-CDHSetupGrp,A (1
n) defined

by

Pr

[
a = дx

2

���� gp := (G1,G2,GT , e,p,д1,д2) ← SetupGrp(1n)
x ← Zp ;a ← A(1

n, gp,дx
1
)

]
is a negligible function in n for all PPT algorithms A.

3 BUILDING BLOCKS
For our semi-generic construction we draw from Fgp-extractable
non-interactive zero-knowledge (NIZK) proofs, as well as equivocal

homomorphic commitments, digital signatures, and public-key en-

cryption which all need to be compatible with the proof system (e.g.,

structure-preserving in the case of the Groth-Sahai proof system).

In the following, we describe these building blocks in an informal

fashion. Formal definitions can be found in Appendix B.

3

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

Fgp-extractable NIZKs. Let R be a witness relation for some NP

language L = {x | ∃wit s.t. (x,wit) ∈ R}. Informally speaking, a

zero-knowledge proof scheme is a system that allows a prover P
to convince a verifier V that some x given to V is contained in L
without V learning anything beyond that fact. In a non-interactive

zero-knowledge (NIZK) proof, only one message, the proof π , is
sent from P to V for that purpose.

More precisely, a NIZK consists of the four algorithms SetupGrp,
SetupPoK, Prove, and Vfy. SetupGrp(1n) generates public (group)
parameters gp given implicitly to all algorithms. The considered

language Lgp may depend on gp. SetupPoK(gp) outputs a common

reference string CRS. Prove(CRS, x,wit) outputs a proof π on input

of x ∈ Lgp and a corresponding witness wit. Vfy(CRS, x, π) outputs
1 if π is considered a valid proof for x ∈ Lgp, and 0 otherwise. The

proof system is called perfectly complete if Vfy(CRS, x, π) always
accepts proofs generated by Prove(CRS, x,wit). It is called perfectly
sound if it is impossible to generate a proof π for x < Lgp such that

Vfy(CRS, x, π) = 1. Moreover, it is called perfectly Fgp-extractable if
there exists some PPT algorithms SetupEPoK and ExtractW such

that (1) SetupEPoK outputs some CRS which is perfectly indis-

tinguishable from a real CRS as well as a trapdoor tdepok and (2)

ExtractW is able to exploit this trapdoor to extract Fgp(wit) for
an NP-witness wit for x ∈ Lgp from any a valid proof π . Perfect
Fgp-extractability implies perfect soundness. Note that if Fgp is the

identity function, then the system is a real proof of knowledge.

However, in our case the domain of Fgp consists of tuples of group

elements and exponents e ∈ Zp , where Fgp maps exponents e to
дe
1
and acts as the identity function on group elements. This is a

property of the Groth-Sahai proof system [17, 20] we have to deal

with. Finally, the proof system is called composable zero-knowledge
if there exist PPT algorithms SetupSPoK and SimProof such that

(1) SetupSPoK outputs some CRS which is computationally indis-

tinguishable from a real CRS as well as a trapdoor tdspok and (2)

SimProof can use this trapdoor to generate proofs for x ∈ Lgp with-
out knowing a witness for x that look like real proofs even if tdspok
is known.

Fgp-binding commitments. A commitment scheme allows a

user to commit to a messagem and publish the result, called com-

mitment c , in a way that m is hidden from others, but also the

user cannot claim a differentm afterwards when he opens c . In an

Fgp-binding commitment scheme one commits to a messagem but

opens the commitment using Fgp(m).
More precisely, a non-interactive commitment scheme consists of

the four algorithms SetupGrp,Gen, Com, andOpen. SetupGrp(1n)
generates public (group) parameters gp and Gen(gp) a public com-

mon reference string CRS. The parameters gp fix a message space

for the commitment scheme. Let Fgp be a bijective function on the

message space. We call the codomain of Fgp the implicit message

space. Com takes the CRS and a messagem as input and outputs a

commitment c as well some decommitment value d (aka opening

value). To verify that a commitment can be opened with a message

Open is used. It takes CRS, c , d , as well as some implicit message

M as input and returns 1 or 0. We call the scheme correct if Open
always returns 1 on input (c,d) ← Com(CRS,m) and Fgp(m). A
commitment scheme is called hiding if any PPT adversary A has

negligible advantage to distinguish between the commitments to

two messages chosen by A. It is called Fgp-binding if any PPT ad-

versary has a negligible advantage to find a commitment that can be

opened using two different implicit messagesM , M ′. Moreover, it

is equivocal if, roughly speaking, there is a trapdoor for the CRS that
allows to efficiently open a commitment with any given implicit

message. Finally, the scheme is called additively homomorphic if
commitments c1 tom1 and c2 tom2 can efficiently be combined

using CAdd(c1, c2), resulting in a commitment c tom1 +m2.

Digital signatures. A digital signature scheme consists of the

four algorithms SetupGrp, Gen, Sgn, and Vfy. SetupGrp(1n) gen-
erates public (group) parameters gp. The key generation algorithm

Gen(gp) outputs a secret key sk and a public key pk. The signing
algorithm Sgn outputs a signature σ on input of a messagem and

sk, and the verification algorithm Vfy decides whether σ is a valid

signature onm given pk,m, and σ . A signature scheme is correct
if Vfy always outputs 1 on input σ ← Sgn(sk,m), pk andm. It is

called EUF-CMA secure if any PPT adversaryA given pk and access
to a signature oracle which signs arbitrary messages of his choice,

has negligible advantage to compute a signature to a new message.

PKE. A public-key encryption (PKE) scheme consists of the

four algorithms SetupGrp, Gen, Enc, and Dec. SetupGrp(1n) gen-
erates public (group) parameters gp. The key generation algorithm

Gen(gp) outputs a secret key sk and a public key pk. The encryp-
tion algorithm Enc(pk,m) takes pk and a messagem and outputs

a ciphertext c . Decryption Dec(sk, c) takes sk and c and outputs a

messagem or⊥. For correctness, we want thatDec always outputsm
on input c ← Enc(pk,m). A PKE scheme is called IND-CPA secure

if any PPT adversaryA has negligible advantage to distinguish the

ciphertexts of two messages chosen by A.

4 BBA+ DEFINITION
In this section, we introduce BBA+ schemes along with security

and privacy definitions appropriate for a variety of applications.

4.1 High-Level System Description
Let us start with an overview of the different parties involved in a

BBA+ scheme and an high-level description of the algorithms and

protocols they use.

A BBA+ system mainly involves five types of parties: A Trusted

Third Party (TTP), an Issuer, an Accumulator, a Verifier, and a User.

There might be additional separate parties in certain scenarios like

a System Operator, etc.

System setup. To setup the system once, we make use of a

Trusted Third Party T (or a number of mutually distrusting parties

doing a multi-party computation). This party computes a common

reference string (CRS), which typically consists of a description of

the underlying algebraic framework all algorithms and protocols

will use as well as certain system-wide public keys. The TTP also

computes a trapdoor which can be used to remove the unlinkabil-

ity of user transactions but which is only needed for definitional

purposes. Of course, we need to assume that this trapdoor is not

given to anyone (e. g., the Issuer, Accumulator, or Verifier). The TTP

could be a (non-governmental) organization trusted by both, Users

to protect their privacy and Issuers, Accumulators, and Verifiers to

protect system security.

4

BBA+: Improving Privacy-Preserving Point Collection , ,

To obtain a working system, the Issuer I also needs to generate

a key pair consisting of a public and a secret key (pkI, skI). The
secret key is shared with the Accumulator and Verifier, and can be

used to create BBA+ tokens and update their balance. The public

key is used to verify the authenticity of such a token.

System operation. In order to participate in the system, a user

first needs to generate a key pair. The public key will be used to

identify the user in the system and is assumed to be bound to a

physical ID such as a passport number, social security number, etc.

Of course, for this purpose the public key needs to be unique. We

assume that ensuring the uniqueness of user public keys as well as

verifying and binding a physical ID to them is done “out-of-band”

before calling the BBA+ protocols (in particular the Issue protocol).
A simple way to realize the latter could be to make use of external

trusted certification authorities.

Issuing tokens. To generate a BBA+ token, a user and the issuer

execute the Issue protocol. In this protocol the user proves that he is
the owner of the claimed public key pkU , for which a token should

be generated using skU . As already explained, when this protocol

is executed it has been ensured that pkU is unique, bound to a

physical ID, and no token has been generated before under pkU .
1

This information can be stored in a database, e. g., maintained by

the issuer or a separate system operator. The user’s protocol output

is a BBA+ token with a balance 0.

Collecting points. To add a (postive or negative) value v to the

current balance
2w of a token, the user and the accumulator interact

in the scope of the Accum protocol. As these protocol runs should

be anonymous and unlinkable the accumulator is only given the

secret key it shares with the issuer and the value v . It is not given
and may not derive any information about the user it interacts

with, provided that this user behaves honestly. The user’s output

is the updated token with balance w + v . The accumulator’s out-

put is some double-spending tag, enabling the identification of the

user if he uses the old version of the token with balance w in an-

other transaction. To this end, double-spending tags are periodically

transmitted to a central database which is regularly checked for

two double-spending tags associated with the same token version

(expressed by having identical token version numbers). If the DB

contains two such records, then algorithm IdentDS can be used to

extract the public key of the user this token belongs to as well as a

proof (such as his secret key) that the user is guilty. The latter can

be verified using algorithm VerifyGuilt. The DB will typically be

maintained by the system operator which will coincide in many

scenarios with the issuer. Also, IdentDS will be run by this party.

VerifyGuilt may be run by anyone, in particular by justice.

Claiming a balance and redeeming points. A user who wants to

prove to some verifier that he has a valid token with balancew and

possibly, as needed in some applications, redeemv points ofw , will

interact with the verifier in the scope of the Vfy protocol. Similar to

the Accum protocol, also Vfy protocol runs should be anonymous

and unlinkable. This is the reason why the verifier does only receive

1
Note that it is possible for a user to have more than one token by allowing him to

have more than one public key bound to his name.

2
Note that the semantics ofw is not necessarily fixed to be simply the sum of collected

points. For instance, one could also encode two counters intow , one for positive points

and one for negative points.

minimal input such as the issuer’s secret key andw .
3
The outcome

for the user is again an updated token of balancew +v (note that

v might be a negative value) which is ready to be used in the next

transaction. The verifier’s output is a double-spending tag just as

before. This data must eventually be transferred to the database

already mentioned.

4.2 Formal System Definition
The following definition formalizes our notion of extended black-

box accumulation systems that are interactive, offline, and enforce

the use of fresh tokens.

Definition 4.1 (BBA+ Scheme). An extended black-box accumu-
lation (BBA+) scheme BBAP = (Setup, IGen,UGen, Issue,Accum,
Vfy,UVer, IdentDS,VerifyGuilt) with balance and accumulation

value space Zp (where p may depend on CRS and, in particular, n)
consists of the following PPT algorithms and interactive protocols:

(CRS, td) ← Setup(1n) The setup algorithm takes the security pa-

rameter as input and returns a public common reference string CRS
and a trapdoor td.4

(pkI, skI) ← IGen(CRS) The issuer’s key generation algorithm

takesCRS as input and returns a public and private key pair (pkI, skI),
where the skI will be shared with accumulator and verifier. We

assume for convenience that CRS will be part of pkI .
(pkU, skU) ← UGen(CRS) The user’s key generation algorithm

takesCRS as input and returns a public-private key pair (pkU, skU)
which is used for authentication during token issuance.

((τ ,bU),bI) ← Issue⟨U(pkI, pkU, skU),I(pkI, skI, pkU)⟩ The
interactive token issuing protocol is executed between a user U,

given pkI and his own public and private key pkU, skU as input,

and an issuer I, whose input is pkI, skI and the public-key pkU
of the userU. At the end of the protocol, the user outputs a token

τ (with balance 0) and a bit bU , and the issuer a bit bI . The bit bU
(resp. bI) indicate whetherU (resp. I) accepts the protocol run.

((τ ∗,bU), (dstag, hid,bAC)) ← Accum⟨U(pkI, pkU, skU, τ ,
w,v),AC(pkI, skI,v)⟩ The interactive accumulation protocol is

executed between a user U and an accumulator AC. The user’s

input is pkI , his own public and private key pkU, skU , a token
τ with balance w , and the value v . The accumulator’s input is

pkI, skI , and the value v . At the end of the protocol, the user

outputs an updated token τ ∗ (with balancew +v) and a bit bU . The

issuer’s output consists of some double spending tag dstag = (s, z)
with token version number s and data z, as well as a hidden user ID

hid,5 as well as a bit bAC . The bit bU (resp. bAC) indicate whether
U (resp. AC) accepts the protocol run.

((τ ∗,bU), (dstag, hid,bV)) ← Vfy⟨U(pkI, pkU, skU, τ ,w,v),
V(pkI, skI,w,v)⟩ The interactive verification and redeeming pro-

tocol is run between a user U and a verifier V . The inputs and

outputs are analogous to those of the Accum protocol, except that

3
Note that in certain scenarios revealing w may help to link transactions. For such

applications, the framework can be extended to only show a bound on the balance

or to perform a range proof. However, we deliberately avoid such an proof due to

performance reasons. See Appendix G for a discussion.

4
The trapdoor is needed in the security definition to define the legitimate balance of a

token despite token transactions should be unlinkable.

5hid is used for definitorial purposes only. In our instantiation, hid will be an encryp-

tion of pkU .

5

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

V has the current balancew as an additional input, whichU must

reveal before the protocol is run.

b ← UVer(pkI, pkU, skU, τ ,w) The token verification algorithm

is a non-probabilistic polynomial-time algorithm run byU which,

given pkI , the user’s public and secret key pkU, skU , a token τ ,
and balancew , outputs a bit b. This bit is 1 if τ is a valid token with

balancew owned by the user with public key pkU .
(pkU,Π) ← IdentDS(pkI, (s1, z1), (s2, z2)) The double-spender de-
tection algorithm is a non-probabilistic polynomial-time algorithm

which is given pkI and two double-spending tags (s1, z1) and
(s2, z2). It returns the public key pkU of a user and a proof of

guilt Π, or it returns an error ⊥.

b ← VerifyGuilt(pkI, pkU,Π) The guilt verification algorithm is a

non-probabilistic polynomial-time algorithm which is given pkI , a
user public key pkU and a proof of guilt Π. It returns 1 if the user
with public key pkU is considered guilty of double-spending and 0

otherwise.

We defer the straightforward definition of correctness of a BBA+
scheme to the appendix, see Appendix A.

4.3 System Security
For securitywewill distinguish between a reduced, simplifiedmodel

and a more natural, full-fledged model. In the full-fledged model,

(cf. Appendix E) the considered adversary can be a collusion of

malicious users who additionally may command, eavesdrop on,

and adaptively corrupt honest users. In the simplified model, in-

troduced in the following, no interactions with honest users are

considered. Fortunately, we can show in a black-box fashion that

any scheme which is secure in our reduced model is also secure in

the full-fledged model when all protocol messages are additionally

encrypted with an IND-CCA secure encryption scheme (cf. Ap-

pendix F). Note that privacy will not be affected by extending the

protocols with encryption.

With our security definition we will essentially capture three

properties:

(1) A token may only be used by its legitimate owner (i. e., the

user it was issued to).

(2) For a token one may only claim exactly the amount of

points that have legitimately been collected with this to-

ken up to this point unless an old version of this token is

presented.

(3) Users presenting old tokens can be identified (after the

fact).

Formalizing the above notion raises a major problem: It requires

to link each transaction with a user and token. However, on the

other hand, we will demand that transactions are anonymous and

unlinkable. To resolve this issue, we only consider systems where

privacy can be abolished given a trapdoor td (which is kept secret

by the TTP) to the CRS. We call such schemes trapdoor-linkable
and formalize them in the following.

When we talk about a successful protocol run in the following,

we always mean that this run has been accepted by the issuer, accu-

mulator, or verfier. Let AC’s view of a run of the Accum protocol

consist of all its inputs, outputs, and messages sent and received,

i. e., (pkI, skI,v,msgs, s, z, hid,bAC), where msgs ∈ {0, 1}∗ is the
bitstring of messages sent during the protocol run. Similarly, let

V’s view of a run of the Vfy protocol be represented by a tuple

(pkI, skI,w,v,msgs, s, z, hid,bV). For some fixed security param-

eter n ∈ N and CRS← Setup(1n) let us consider the set of views
of AC, denoted by VAccum

n,CRS , resulting from any Accum protocol

run accepted by AC with any (possibly malicious) party and any

(pkI, skI) ← IGen(CRS), v ∈ Zp as input to AC. We define

V
Vfy
n,CRS analogously with respect to executions of the Vfy protocol

accepted byV .

Definition 4.2 (Trapdoor-Linkability). A BBA+ scheme BBAP is

called trapdoor-linkable if it satisfies the following conditions:

(1) Completeness. Let n ∈ N, (CRS, td) ← Setup(1n), and
view ∈ VAccum

n,CRS . Let hid denote the hidden user ID con-

tained in view. Then there exist inputs pkU, skU, τ ,w , and

random choices for an honest userU and honest accumu-

lator AC such that an Accum protocol run between U

and AC with these inputs and random choices leads to a

view view′ ∈ VAccum
n,CRS containing the same hidden user ID

hid as view. The same holds for all view ∈ VVfy
n,CRS with

respect to Vfy.
(2) Extractability. There exists a PPT algorithm ExtractUID

such that for any n ∈ N, (CRS, td) ← Setup(1n) and
view = (pkI, skI,v,msgs, s, z, hid, 1) ∈ VAccum

n,CRS result-

ing from an Accum protocol run with an honest user on

input pkU , ExtractUID outputs pkU on input (td, hid).6

The same needs to hold for ExtractUID with respect to

views view ∈ VVfy
n,CRS.

Remark 1. Note that extractability as defined above implies that
any fixed view view cannot result from interactions with different
users, but is uniquely associated with a single user. Furthermore, by
demanding completeness we prevent the use of some odd extraction
algorithms that output some special user public key on input of a
specifically crafted hid that only an adversary is able to generate
but not an honest user. Such extraction algorithms may lead to some
issues when used in our security definition.

In the security experiments we are going to formalize, an ad-

versary A may interact with an honest issuer, accumulator, and

verifier an arbitrary number of times and concurrently. Clearly, the

adversary playing the role of the user may behave dishonestly and

not follow the corresponding protocols. In order to formalize this

adversarial setting, we define a couple of oracles the adversary may

query.

• MalIssue(pkU) lets the adversary initiate the Issue pro-

tocol with an honest issuer I provided that there is no

pendingMalIssue call for pkU and pkU has also not been

used in a successful call to MalIssue before.
• MalAcc(v) is used by the adversary to initiate the Accum

protocol with AC for input v ∈ Zp .
• MalVer(w,v) is used by the adversary to initiate the Vfy

protocol withV for inputw ∈ Zp and v ∈ Zp .

In the setting described above, we consider several adversarial

goals. The first two goals formalized in Theorems 4.3 and 4.4 cover

6
More generally, we could give ExtractUID the whole view as input. However, this may

significantly complicate security proofs as we would need some form of completeness

for all building blocks.

6

BBA+: Improving Privacy-Preserving Point Collection , ,

Experiment Expob-issueBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
(pkU , skU) ← UGen(CRS)
b ← AMalIssue,MalAcc,MalVer(pkI , pkU)
The experiment returns 1 iff A did a successful call to MalIssue on input of the given

public-key pkU .

Figure 1: Owner-binding experiment for Issue.

Experiment Expob-accBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer(pkI)
The experiment returns 1 iff A did a successful call to MalAcc or MalVer such that

ExtractUID applied to hid being part of the view of this call outputs a public-key pkU
for which there has been no successful execution ofMalIssue up to this call.

Figure 2: Owner-binding experiment for Accum/Vfy.

the owner-binding property, already mentioned, with respect to the

different protocols Issue, Accum, and Vfy. Theorem 4.5 formalizes

the balance-binding property assuming that no double-spending

took place. Consequently, Theorem 4.6 ensures that such double-

spendings are indeed hard to accomplish without being identified

(and punished).

In Theorem 4.3, we consider the probability that an adversary

may succeed in receiving a token in the name of an honest, uncor-

rupted user (i. e., using the user’s public-key). It demands that an

adversary may only create tokens in his own name.

Definition 4.3. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Issue if for any PPT adversary A

in the experiment Expob-issueBBAP,A (n) from Fig. 1 the advantage of A

defined by

Advob-issueBBAP,A (n) := Pr[Expob-issueBBAP,A (n) = 1] (1)

is negligible in n.

Theorem 4.4 demands that an adversary may not be able to

successfully call the accumulation or verification protocol for a

forged token, i. e. a token that has not been issued by a legitimate

issuer.

Definition 4.4. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Accum and Vfy if for any PPT adver-

sary A in the experiment Expob-accBBAP,A (n) from Fig. 2 the advantage

of A defined by

Advob-accBBAP,A (n) := Pr[Expob-accBBAP,A (n) = 1] (2)

is negligible in n.

With Theorem 4.5 we ensure that, unless some token is used

twice (which induces the usage of the same token serial number),

the claimed balance for a token in the scope of the verification

protocol always coincides with sum of points allegedly collected

with this token. Note that if this property is violated, then this could

mean that the claimed balance is not equal to the “real” balance of

the token or that the “real” balance does not coincide with the sum

of legitimately collected points associated with this token we have

in the records .

Experiment ExpbbBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer(pkI)
The experiment returns 1 iff A did a successful call toMalVer resulting in a view view =

(pkI , skI ,w , v ,msgs, s , z, hid, 1) ∈ VVfy
n,CRS and extracted user public-key pkU ←

ExtractUID(td, hid) such that the following conditions are satisfied:

– all successful MalIssue/MalAcc calls resulted in different token version numbers

and

– the claimed balance w ∈ Zp does not equal the sum of previously collected accu-

mulation values v for pkU , i. e.,

w ,
∑

v∈VpkU

v ,

whereVpkU is the list of all accumulation valuesv ∈ Zp that appeared in previous

successfull calls to MalAcc or MalVer for which pkU could be extracted using

ExtractUID.

Figure 3: Balance binding experiment.

Experiment ExpdsdBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AMalIssue,MalAcc,MalVer(pkI)
The experiment returns 1 iff A did two successful MalAcc/MalVer calls resulting in

two views view1 and view2 including two double-spending tags dstag
1
= (s , z1) and

dstag
2
= (s , z2) and extracted user public-keys pk

(1)

U
and pk(2)

U
(using ExtractUID) such

that one of the following conditions is satisfied:

– pk(1)
U
, pk(2)

U
or

– IdentDS(pkI , dstag1, dstag2) , (pk
(1)

U
, Π) or

– IdentDS(pkI , dstag1, dstag2) = (pk
(1)

U
, Π) butVerifyGuilt(pkI , pk

(1)

U
, Π) = 0

Figure 4: Double-spending detection experiment.

Definition 4.5. A trapdoor-linkable BBA+ scheme BBAP is called

balance-binding if for any PPT adversary A in the experiment

ExpbbBBAP,A (n) from Fig. 3 the advantage of A defined by

AdvbbBBAP,A (n) := Pr[ExpbbBBAP,A (n) = 1] (3)

is negligible in n.

Theorem 4.6 enforces that two transactions leading to the same

token version number have always been initiated by the same user

and this user can be identified.

Definition 4.6. A trapdoor-linkable BBA+ scheme BBAP ensures

double-spending detection if for any PPT adversary A in the ex-

periment ExpdsdBBAP,A (n) from Fig. 4 the advantage of A defined

by

AdvdsdBBAP,A (n) := Pr[ExpdsdBBAP,A (n) = 1] (4)

is negligible in n.

4.4 User Security and Privacy
This section presents the key security properties for users, pro-

tecting them from a dishonest issuer: Firstly, a user should have

the privacy guarantee that its individual interactions cannot be

exploited for tracking and secondly no operator should be able to

forge a proof that a user has allegedly committed a double-spending.

Our privacy definition essentially demands that an adversary,

where this could be a collusion of I, AC, and V , may not be

able to link the Accum and Vfy transactions of an honest user.

7

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

More precisely, it demands that Accum and Vfy do not reveal any

information (except for the balance in case of Vfy) that may help

in linking transactions. This even needs to hold for transactions

preceding and succeeding the corruption (except the very next) of

the user thereby leaking all of his secrets to the adversary. Hence,

we define a form of forward and backward privacy. To this end, our

definition follows the real/ideal world paradigm.

In the real world, depicted in Fig. 5, first the CRS is generated

honestly and the adversary setups a public system key pkI of his

choice. Then the adversary is allowed to interact with a couple of

oracles, that allow the adversary to create a number of honest users

and instruct these users to interact with him in the scope of Issue,
Accum, or Vfy. Within these interactions the oracles play the role of

the honest user, while the adversary plays the issuer, accumulator, or

verifier. Whenever an interaction does not successfully terminate

from the user’s perspective, then this particular user refuses to

participate in any future interaction, i. e. the oracles are blocked for

the respective pkU .
7
If the adversary calls an oracle for a blocked

user, the oracle simply sends ⊥-messages. Moreover, for each user

no oracle can be called concurrently, i. e. for any arbitrary but fixed

pkU another oracle can only invoked if no previous oracle call for

the same pkU is still pending. The oracles the adversary can access

are:

• HonUser() creates a new user entity by running (pkU,
skU) ← UGen(CRS). The oracle returns pkU to the ad-

versary.

• RealHonIssue(pkU) lets the user with public key pkU run

the Issue protocol with the adversary impersonating the

issuer I, provided that pkU has not been used before in a

call to RealHonIssue which was successful from the user’s

perspective.

• RealHonAcc(pkU,v) lets the user with public key pkU
run the Accum protocol with the adversary impersonating

the accumulator AC on common input v ∈ Zp , provided
that RealHonIssue(pkU) has successfully been called at

some point before.

• RealHonVer(pkU,w,v) lets the user with public key pkU
run the Vfy protocol with the adversary impersonating the

verifierV on common input v ∈ Zp andw ∈ Zp , provided
that RealHonIssue(pkU) has successfully been called at

some point before.

• RealCorrupt(pkU) can be called by the adversary to cor-

rupt the user with public and secret key (pkU, skU) ←
HonUser(). The oracle outputs the secret key skU of the

user as well as the user’s most recent token τ to the adver-

sary.

At the end of the game, the adversary outputs a bit.

In the ideal world, depicted in Fig. 6, first a CRS along with a

simulation trapdoor tdsim is generated honestly and the adversary

setups a public system key pkI of his choice, whereby the adver-

sary only receives the CRS as in the real game. Then, the adversary

may act exactly like in the real game, by accessing a number of

7
We need to demand that any previous call for pkU was successful as otherwise an

adversarymay simply abort anAccum orVfy transaction or start two such interactions
in parallel and then trigger the user to double-spend its token in a subsequent call

which would reveal the user’s identity. If the adversary has tried to cheat and has been

successfully detected by the user doing so, then this user “leaves” the system.

Experiment Exppriv-realBBAP,A (1
n)

(CRS, td) ← Setup(1n)
(pkI , state0) ← A0(CRS)

b ← AHonUser,RealHonIssue,RealHonAcc,RealHonVer,RealCorrupt
1

(pkI , state0)
return b

Figure 5: Real world privacy experiment.

oracles. However, compared to the real world, some oracles are im-

plemented differently in order not to leak information that allows to

link transactions. Naturally, the oracles SimHonIssue, SimHonAcc
and SimHonVer all receive the public system key pkI and the sim-

ulation trapdoor tdsim. Although these oracles do not get a full

token as input it is unavoidable that in addition to the trapdoor

some more information is still provided to the oracles as otherwise

simulation becomes impossible: SimHonIssue additionally gets the

user’s public key pkU , SimHonAcc gets the accumulation value v
and SimHonVer gets the token balancew . The Issue protocol binds
pkU to a (physical) identity. Hence the issuer expects to see pkU as

part of the public ZK-statement and pkU cannot be omitted. As in

our privacy game a single operator plays the role of I, AC andV

and the single operator dictates with whom it will interact the op-

erator can keep track of all balances per user itself. Consequently,

SimHonVer must present the correct balance and thus the ideal

game will provide the user oracle with that information.

Also, SimCorrupt needs to come up with plausible secrets like a

user’s secret key and a token which are “compliant” with the user’s

previous transactions. After a successful corruption, the oracles run

the real protocol in the subsequent call for the affected pkU using

the “real” secrets for input as returned by SimCorrupt .8 This means

the oracles in the ideal game, distinguish two modes of operation:

If the immediately previous call for pkU has been a SimCorrupt
call, then the oracle just runs the code of a regular honest userU

as in the real game. Otherwise, the oracle runs a user simulation

algorithm that does not receive any user-related input as described

above.

In the ideal game the adversary interacts with the following

oracles:

• HonUser() creates a new user entity by running (pkU,
skU) ← UGen(CRS). The oracle returns pkU to the ad-

versary.

• SimHonIssue(pkU) lets the user with public key pkU run

the Issue protocol with the adversary impersonating the

issuer I, provided that pkU has not been used before in a

call to SimHonIssue which was successful from the user’s

perspective. The internal user simulation algorithmUsim

gets the simulation trapdoor tdsim and pkU .
• SimHonAcc(pkU,v) lets the user with public key pkU run

the Accum protocol with the adversary impersonatingAC

on common inputv ∈ Zp , provided that SimHonIssue(pkU)
has successfully been called at some point before. The in-

ternal user simulation algorithmUsim gets the simulation

trapdoor tdsim and v .

8
This is required as the adversary, given all user secrets, may now perform the next

interaction of this user on his own and learn a double-spending tag. Running the

simulator now needs to result in a second double-spending tag that can be used with

the first one to reveal pkU , which is, however, unknown to the simulator.

8

BBA+: Improving Privacy-Preserving Point Collection , ,

Experiment Exppriv-idealBBAP,A (1
n)

(CRS, tdsim) ← SimSetup(1n)
(pkI , state0) ← A0(CRS)

b ← AHonUser,SimHonIssue,SimHonAcc,SimHonVer,SimCorrupt
1

(pkI , state0)
return b

Figure 6: Ideal world privacy experiment.

Experiment ExpfacpBBAP,A (n)
(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
(pkU , skU) ← UGen(CRS)
Π ← ARealHonIssue,RealHonAcc,RealHonVer(pkI , pkU)
The experiment returns 1 iff VerifyGuilt(pkI , pkU , Π) = 1. (The adversary may only

call the RealHonIssue, RealHonAcc and RealHonVer oracles on input of the key pkU
chosen by the experiment.)

Figure 7: False accusation protection experiment.

• SimHonVer(pkU,w,v) lets a user with public key pkU
run the Vfy protocol with the adversary impersonating the

verifierV on common input v ∈ Zp andw ∈ Zp , provided
that SimHonIssue(pkU) has successfully been called at

some point before. The internal user simulation algorithm

Usim gets the simulation trapdoor tdsim, v andw .

• SimCorrupt(pkU) can be called by the adversary to cor-

rupt the user owning the keys (pkU, skU). The oracle out-
puts some secret key sk′

U
as well as some token τ ′.

At the end of the game, the adversary also outputs a bit.

As already mentioned, for privacy we demand that the real and

the ideal world are computationally indistinguishable.

Definition 4.7. We say that a BBA+ scheme BBAP is privacy-
preserving, if there exist PPT algorithms SimSetup and SimCorrupt
as well as interactive PPT algorithms as described in HonIssue,
SimHonAcc and SimHonVer, respectively, such that for all PPT

adversaries A = (A0,A1) in the experiments from Figs. 5 and 6,

the advantage AdvprivBBAP,A (n) of A defined by���Pr[Exppriv-realBBAP,A (n) = 1] − Pr[Exppriv-idealBBAP,A (n) = 1]

��� (5)

is negligible in n.

Remark 2. Our privacy notion is a bit stronger than what is in-
tuitively required. Replacing RealHonIssue by SimHonIssue could
be omitted without loosing any privacy guarantee in a real-world
application. The purpose of privacy is to prevent the operators from
tracking a user between individual interactions. However, if the user
already gets corrupted before the first interaction in the scope of
HonAcc or HonVer, then the user has actually never participated
in the system as an uncorrupted user but has been under control of
the malicious operator right from the beginning. In that case speak-
ing about privacy is pointless. Nonetheless, we introduce a simulated
version SimHonIssue as this kind of privacy notion directly implies
protection against false accusation (see below).

Finally, Theorem 4.8 demands that honest users cannot be falsely

accused of having committed a double-spending by an adversary

who generates pkI and may coincide with I, AC, orV .

Definition 4.8. A trapdoor-linkable BBA+ scheme BBAP ensures

false-accusation protection if for any PPT adversary A in the ex-

periment ExpfacpBBAP,A (n) from Fig. 7 the advantage of A defined

by

AdvfacpBBAP,A (n) := Pr[ExpfacpBBAP,A (n) = 1] (6)

is negligible in n.

5 A BBA+ INSTANTIATION
In this section, we present our “base scheme” BBAPwhich is secure

with respect to the “reduced model” presented in Section 4.3 and

privacy-preserving with respect to the model in Section 4.4. As

already mentioned, this base protocol can easily be made secure

in an extended model where eavesdropping on and corrupting of

honest users is allowed, by encrypting all messages transmitted

during the protocols Issue,Accum andVfy. Please refer to Appendix
F.1 for details.

5.1 Building Blocks
Let SetupGrp be a bilinear group generator (cf. Definition 2.1) which
outputs the description of a bilinear group gp := (G1,G2,GT , e,p,
д1,д2) ← SetupGrp(1n) for which the SXDH problem is assumed to

be hard. For our construction, we draw from the following building

blocks which all make use of SetupGrp as their common group

setup algorithm.

NIZKs. For proving correctness of the computations in the scope

of the Issue, Accum, and Vfy protocol taking place on the user’s

side we make use of F
(1)
gp -, F

(2)
gp , and F

(3)
gp -extractable NIZK proof

systems, denoted by P1, P2, and P3, respectively. The functions

F
(1)
gp , F

(2)
gp , and F

(3)
gp depend on the considered languages L1, L2, and

L3 (defined below), but they have the following in common: They

behave as the identity function with respect to group elements and

map elements from Zp either to G1 or G2 (by exponentiation with

basis д1 or д2) depending on whether these are used as exponents

of aG1 orG2 element in the language. The proof systems will share

a common reference string. More precisely, we demand that there

is a shared extraction setup algorithm which generates the CRS and

also a single extraction trapdoor for P1, P2, and P3. Let us denote
this algorithm by SetupEPoK and its output by (CRSpok, tdepok) ←
SetupEPoK(gp) in the following. Furthermore, let us denote the

prove and verify algorithms of these proof systems by PX .Prove
and PX .Vfy, for 1 ≤ X ≤ 3. We will make use of an SXDH-based

instantiation of Groth-Sahai proofs [20] for this purpose. Note that

GS proofs are not always zero-knowledge (cf. Appendix B.4), but

we ensured that they indeed are for the languages we consider.

Homomorphic commitments. In order to form a token and com-

mit to secrets including the user secret key and the token balance,

we will make use of an equivocal F ′gp-binding homomorphic com-

mitment scheme C for messages from Z4p . The commitment space

will be G2. The function F ′gp will map m := (m1,m2,m3,m4) to

M := (дm1

1
,дm2

1
,дm3

1
,дm4

1
), so G4

1
is the implicit message space.

Moreover, as the user needs to be able to prove that it can open

a commitment, the corresponding verification equations must be

compatible with our proof systems. We will use a scheme by Abe

9

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

Setup(1n)
gp := (p,G1,G2,GT , e , p, д1, д2) ← SetupGrp(1n)
(CRSpok, tdepok) ← SetupEPoK(gp)
CRScom ← C.Setup(gp)
(skT , pkT) ← E.Gen(gp)
CRS := (gp, CRScom, pkT , CRSpok)
td := (tdepok, skT)
return (CRS, td)

IGen(CRS)
(pksig, sksig) ← S.Gen(CRS)
return (pkI , skI) := ((CRS, pksig), sksig)

UGen(CRS)
y ← Zp
(pkU , skU) := (д

y
1
, y)

return (pkU , skU)

Figure 8: Setup and Key Generation

et al. [2] for this purpose. We denote the CRS generator, commit-

ment, and openening algorithms by C.Setup, C.Com, and C.Open,
respectively. Furthermore, as CAdd conincides with multiplication

of commitments. We denote this operation by “·”.

Signatures. In our protocol, commitments need to be signed by

the issuer to form a valid token. Moreover, users need to prove

that they know a valid signature without revealing this signature.

Hence, we will make use of an EUF-CMA secure signature scheme

S for messages over G2 which is compatible with our proof system.

To instantiate this building block, we make use of the structure-

preserving signature scheme of Abe et al. [1]. We denote the key

generation algorithm, the signing algorithm, and the verification

algorithm by S.Gen, S.Sgn, and S.Vfy, respectively.

Encryption. The hidden user ID token will simply be an encryp-

tion of a user’s public key under a public key contained in the

CRS. For this purpose, an IND-CPA secure encrption scheme E for

messages inG1 which is compatible with our proof system suffices.

This building block can be intantiated with the ElGamal encryption

scheme [16]. We denote the corresponding algorithms by E.Gen,
E.Enc, and E.Dec.

5.2 Protocol Description
Figures 8 to 11 summarize the scheme. In the following, we will

elaborate on the details of the different protocols and algorithms.

Note that an informal but intuitive system description was already

given in Section 1.1. We omit repeating the high-level ideas here

due to the page limit.

System and user setup. The setup and key generation algorithms

are given in Figure 8. The global CRS CRS generated by Setup
consists of a CRSCRScom for the commitment scheme, a shared CRS

CRSpok for the three proof systems, as well as a public encryption

key pkT to generate hidden user id tokens hid. The corresponding
trapdoor td contains the extraction trapdoor tdepok for the proof
systems as well as the secret key skT to decrypt hidden id tokens.

Thus, ExtractUID can be defined by ExtractUID((tdepok, skT), hid)

U(pkI , pkU , skU) I(pkI , skI , pkU)

s′, u1 ← Zp
(c′, d ′) := C.Com(CRScom,

(s′, 0, skU , u1))

x := (c′, pkU)

wit := (дskU
2

, дu1
1

, дs
′

1
, d ′)

π := P1.Prove(CRSpok, x , wit)

c′, π

x := (c′, pkU)

if P1.Vfy(CRSpok, x , π) = 0

return 0

s′′ ← Zp
(c′′, d ′′) = C.Com(CRScom,

(s′′, 0, 0, 0))

c := c′ · c′′

σ = S.Sgn(sksig, c)

c , d ′′, σ , s′′

s := s′ + s′′ mod p

d := d ′ · d ′′

τ := (c , d , σ , s , u1)

if UVer(pkI , pkU , skU , τ , 0) = 0

return (⊥, 0)

else return (τ , 1) return 1

Figure 9: Issue protocol

:= E.Dec(skT , hid) .9 The key pair of the issuer is essentially a

signature key pair (pksig, sksig). Remember, that the global CRS

is included in the public key for convenience, i. e. (pkI, skI) :=
((CRS, pksig), sksig). The key pair of a user consists of skU = y

and pkU = д
y
1
, where pkU is used as the user identity and skU to

prove this identity in the scope of Issue as well as to prove guilt in

VerifyGuilt.

Issuing tokens. The issue protocol is shown in Fig. 9. Essentially,

a valid token consists of a commitment c ∈ G2 on the token version

number s ∈ Zp , the balance w ∈ Zp , the user secret key skU ∈
Zp , and the double-spending tag randomness u1 ∈ Zp , as well
as a signature on c under skI . The token version number needs

to be chosen jointly by U (choosing an additive share s ′) and I
(choosing an additive share s ′′) to ensure unlinkability on the one

hand and enable double-spending detection on the other hand. The

randomness u1 is chosen by U and will be used in the scope of

Accum and Vfy to compute double-spending tags. The fact that it

is hidden from I ensures that the double-spending tag will look

random if the token is used once. The fact that it is bound to the

token ensures that double-spending will reveal the user identity. To

generate such a token,U commits to s ′,w = 0, skU , and u1. It then
computes a proof showing that the corresponding commitment c ′

9
Note that, actually, the CRS for the proof systems does not need to be generated by

the extraction setup algorithm as tdepok is not needed by ExtractUID. We decided to

do this nevertheless to simplify security proofs: it avoids to first switch to extraction

mode in every security proof.

10

BBA+: Improving Privacy-Preserving Point Collection , ,

UVer(pkI , pkU , skU , τ ,w)
parse (c , d , σ , s , u1) := τ
if pkU = д

skU
1
∧ C.Open(CRS, (дs

1
, дw

1
, pkU , д

u1
1
), c , d) = 1∧

if S.Vfy(pksig, σ , c) = 1

return 1

else return 0

IdentDS(pkI , (s1, z1), (s2, z2))
parse (t , u2) := z1, (t ′, u′

2
) := z2

if s1 , s2 ∨ u2 = u′
2
return ⊥

else skU := (t − t ′) · (u2 − u′
2
)−1 mod p, pkU := дskU

1

return (pkU , skU)

VerifyGuilt(pkI , pkU , Π)

if дΠ
1
= pkU return 1

else return 0

Figure 10: User verification of tokens and double-spending
algorithms

has been formed correctly by the owner of pkU . More precisely, P1
is used to compute a proof π for a statement x from the language

L
1,pkI defined by

L
1,pkI

:=

(c
′, pkU)

�������
∃ SKU ∈ G2; S ′,U1, D′ ∈ G1 :

C.Open(CRScom, (S ′, 1, pkU ,U1), c ′, D′) = 1

e(pkU , д2) = e(д1, SKU)

 (7)

Note that the language depends on public parameters like gp,
CRScom, CRSpok, pksig which are all subsumed in pkI and remain

fixed after the system has been setup. The first time the language

is defined we denote this dependence by a suffix, but later omit

this and refer to the language as L1 = L
1,pkI . Note that the second

equation in Eq. (7) actually proves the knowledge of д
skU
2

(rather

than skU itself).
10

However, computing д
skU
2

without knowing

skU (only given pkU) is assumed to be a hard problem (Co-CDH).

Receiving c ′ and a valid proof π , I adds a random s ′′ to s ′ con-
tained in c ′ by using the homomorphic property of C. This results
in the commitment c which can be opened using the opening value

d = d ′ · d ′′. The commitment c is then signed by I resulting in

signature σ . Please note the asymmetry in the handling of the

commitment and its opening value: The user sends its half of the

commitment c ′ but not the opening, while the issuer send the whole
commitment c together with his half of the opening d ′′. The token
and s ′′ are sent over toU who verifies the correctness by applying

UVer. The UVer algorithm is shown in Fig. 10. It verifies that c
opens correctly, σ is valid, and skU is the secret key belonging to

pkU .

Collecting points. The Accum protocol is depicted in Figure 11.

Given his current token τ = (c,d,σ , s,u1), aU receives a random

challengeu2 fromAC to prepare the data component of the double-

spending tag t = skUu2 + u1 for this token. Moreover,U prepares

the generation of a fresh token just like in the Issue protocol. To this

10
Note that proving a statement ∃skU ∈ Zp : pkU = д

skU
1

instead would not help

as we can only extract д
skU
1

from the proof.

U(pkI , pkU , skU , τ ,w , v) AC(pkI , skI , v)

u2 ← Zp

u2

parse (c , d , σ , s , u1) := τ

t := skUu2 + u1 mod p

r , s′, u′
1
← Zp

hid := E.Enc(pkT , pkU ; r)

(c′, d ′) := C.Com(CRScom,

(s′,w , skU , u
′
1
))

x := (c′, (дs
1
, t , u2), hid)

wit := (c , σ , дw
1
, pkU , д

u1
1

, дd
1
,

дs
′

1
, д

u′
1

1
, дd

′

1
, skU , u1, r)

π = P2.Prove(CRSpok, x , wit)

c′, s , t , π , hid

z := (t , u2)

dstag := (s , z)

x := (c′, (дs
1
, t , u2), hid)

if P2.Vfy(CRSpok, x , π) = 0

return (⊥, ⊥, 0)

s′′ ← Zp
(c′′, d ′′) := C.Com(CRScom,

(s′′, v , 0, 0))

c∗ := c′ · c′′

σ ∗ = S.Sgn(sksig, c∗)

c∗, d ′′, σ ∗, s′′

s∗ := s′ + s′′ mod p

d∗ := d ′ · d ′′

w∗ := w + v

u∗
1
:= u′

1

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

if UVer(pkI , pkU , skU , τ
∗,w∗) = 0

return (⊥, 0)

else return(τ ∗, 1) return (dstag, hid, 1)

Figure 11: Accumulation protocol

end, it computes a commitment c ′ containing the same balancew
and user secret key skU as c but a fresh share s ′ for a new token ver-

sion number and fresh randomness for generating double-spending

tags. (Note that in order to ensure unlinkability, one cannot simply

send over τ to AC to accumulate points.) Moreover, hid is gen-

erated as a fresh encryption of pkU . Recall that while hid does

not fulfill an obvious function, it is needed for our security defini-

tions. Finally, the user proves that everything has been computed

as claimed, i. e., c is a signed commitment; c ′ is just a “new version”

of this commitment containing the same balance and user secret

key skU ; t is part of the double-spending tag “containing” skU and

involving the user randomness u1 fixed in c and the accumulators

challenge u2; and hid contains pkU belonging to skU . More pre-

cisely, P2 is used to compute a proof π for a statement x from the

11

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

language L
2,pkI defined by



(c′, (S , t , u2), hid)

����������������������

∃ c , σ ∈ G2 ;

W , pkU ,U1, D , S′,U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S ,W , pkU ,U1), c , D) = 1

C.Open(CRScom, (S′,W , pkU ,U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

,U1 = д
u
1

1
, t = skUu2 + u1



(8)

Upon receiving c ′, s , z, π , and hid, AC checks the proof π and

updates c ′ by adding s ′′ to s ′ andv tow resulting in commitment c∗.
The commitment is signed and c∗ together with the accumulator’s

half of the opening value d ′′ and the corresponding signature σ ∗

are sent to the user who verifies them.

Claiming a balance and redeeming points. TheVfy protocol works
the same way as the Accum protocol except that the balancew is

not treated as a secret anymore. That means the balance (or more

preciselyW := дw
1
) is not a witness but part of the statement x in

the language L
3,pkI defined by



(c′, (S , t , u2), hid,W)

����������������������

∃ c , σ ∈ G2 ;

pkU ,U1, D , S′,U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S ,W , pkU ,U1), c , D) = 1

C.Open(CRScom, (S ′,W , pkU ,U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

,U1 = д
u
1

1
, t = skUu2 + u1



(9)

for whichU generates a proof using P3.

Double-spending detection. The IdentDS and VerifyGuilt algo-
rithms are given in Figure 10. To see why IdentDS is working,

observe the following: First, to use a specific token τ in a Accum or

Vfy protocol run, a (potentially malicious) user is forced to reveal

the fixed token version number s . This is because, s is bound to τ
by being contained in the signed commitment c and the proof π
ensures that the former is indeed the case even if c and σ are not

revealed explicitly. Second, c and π also enforce that the fixed user

secret key skU and the fixed double-spending tag randomness u1
as well as a freshly chosen challenge value u2 are always used in

a Accum or Vfy protocol run involving τ to form z = skUu2 + u1.
Hence, double-spending a token will reveal the same token ver-

sion number s1 = s2 and involve different challenges u2 , u
′
2
with

overwhelming probability. In this case, we can easily extract skU
given z1 = skUu2 + u1 and z2 = skUu

′
2
+ u1. The proof of guilt Π

is simply set to be skU , which is assumed to be hard to compute

given pkU only.
11

Theorem 5.1 (System Security). Assume the SXDH assump-
tion holds w.r.t. SetupGrp. Let us assume that BBAP and E are cor-
rect, P1, P2, P3 are perfectly F

(1)
gp -, F

(2)
gp -, and F

(3)
gp -extractable, re-

spectively, C is additively homomorphic and F ′gp-binding, and S is
EUF-CMA secure. Then BBAP is trapdoor-linkable, owner-binding

11
Of course, we need to show that honest protocol runs will not reveal significant

information about skU .

w.r.t. Issue, owner-binding w.r.t. Accum/Vfy, balance-binding, and
ensures double-spending detection.

Theorem 5.2 (User Security and Privacy). Assume the SXDH
assumption holds w.r.t. SetupGrp. Let E be an IND-CPA-secure asym-
metric encryption scheme, C be an additively homomorphic, perfectly
hiding and equivocal commitment scheme, and P1, P2, P3 be compos-
able zero-knowledge. Then BBAP is privacy-preserving and ensures
false-accusation protection.

The theorems follow from our proofs in Appendices C and D.

See Appendix B for formal definitions of our building blocks and

their properties. Also, see Appendix B for concrete instantiations

of E, S, C, and the NIZKs.

6 PERFORMANCE EVALUATION
We evaluate the performance of our BBA+ instantiation by imple-

menting it for a target platform suitable for mobile applications.

To this end, network payload and execution time is measured. The

results, in terms of execution time, are limited to the user device.

We expect the hardware of the issuer, accumulator, or verifier to be

much more powerful and therefore to be capable of executing the

algorithms in insignificant time. Not included in our estimations

are data-transmission times, since they depend on external factors

not influenced by BBA+.

As smartphones have become ubiquitous in the developed and

developing world, we choose them as our target platform. An addi-

tional benefit of this platform is that a developer using our scheme

does not have to distribute new hardware and users are already

familiar with the functionality of their device.

We evaluate our implementation on a OnePlus 3 smartphone. It

features a Snapdragon 820 Quad-Core processor (2 × 2.15 GHz & 2

× 1.6 GHz), 6 GB RAM and runs Android OS v7.1.1 (Nougat). The

implementation is done in C++11 using the RELIC toolkit v.0.4.1,

an open source crypto-library under the LGPL license [5].

6.1 Bilinear Groups
The digital signature scheme, the commitment scheme and the

non-interactive zero-knowledge proof system all build on pairing-

friendly elliptic curves. We configured RELIC with curves of 254-

bit order, the minimal supported size for pairing-friendly curves

that exceed 80 bit security. With this parameter choice the toolkit

configures itself to use the Barreto-Naehrig curves Fp254BNb and

Fp254n2BNb presented by Aranha et al. for improved efficiency

[6, 25].

We select the optimal Ate pairing as RELIC’s pairing function

since current speed records are achieved using this function [28].

To further optimize the performance of BBA+ one might use a

custom implementation of elliptic curves and a compatible bilinear

map, which is optimized for this purpose. We emphasize however,

that RELIC itself already delivers very promising execution times.

6.2 Prover-Chosen CRS
The prover-chosen CRS as explained in Section X enables some

kind of time-memory tradeoff. A fresh prover-chosen CRS has to be

generated on each run of a protocol to stay unlinkable. To this end,

the transmitted data has to be extended by the prover-chosen CRS,

12

BBA+: Improving Privacy-Preserving Point Collection , ,

Table 1: User execution times for our instantiation

Algorithm Execution Time Data Sent Data Received

[ms] [Bytes] [Bytes]

GenSymKey 2.51 98 0

Issue 114.11 672 320

Acc 315.40 4576 320

Vrfy 303.53 4512 320

as well as a NIZK proving that it was correctly generated using

the original CRS. This results in 4 additional MSE proofs. However,

once the prover-chosen CRS is established, all subsequent Groth-

Sahai operations are roughly reduced to 60% of their computational

costs.

We implemented the prover-chosen CRS method only for the

Accum and Vfy protocols. The Issue protocol would lose perfor-

mance, as there are too few equations benefiting from the prover-

chosen CRS and therefore the setup costs are outweighing the

speedup.

6.3 Implementation Results
Table 1 shows the average execution times for the respective pro-

tocols on the user device and the amount of data that has to be

transmitted from the device to the issuer, accumulator, or verifier

and vice versa. To obtain a compact data stream for network trans-

fer while maintaining generality, we serialized each element as a

length byte, followed by its internal serialization.

As we implemented our BBA+ instantiation extended by mes-

sage encryption (c.f. Appendix F.1), Table 1 includes an algorithm

GenSymKey, which chooses a random key for the symmetric en-

cryption of all protocolmessageswithAES-CBC andHMAC-SHA256.

This key is encrypted using the TwinDH-based KEM by Cash et al.

[13], using the same primitives for its underlying symmetric en-

cryption. As a reference value for an acceptable execution time, we

consider one second to be a good upper bound. All sub-protocols

of BBA+, Issue, Accum and Vfy, execute in under 350 ms on the

user side. If we use for example NFC with its maximum speed of

424 kbit/s, it would take less than 100ms to transmit all data of any

of the protocols from/to the communication terminal. This leaves

more than 550 ms to transmit data packets over the network to the

issuer, accumulator, or verifier, have him compute his part of the

protocol and respond to the user. Assuming that the issuer runs a

powerful backend, it should not be challenging to execute an entire

protocol run in less than a second.

We can therefore conclude that our BBA+ system can be effi-

ciently instantiated and executed.

6.4 Further Optimization
The RELIC toolkit is a multi-purpose library which is not mainly op-

timized for pairing-based elliptic curve cryptography. By creating a

dedicated library focused on a highly optimized implementation of

pairing-friendly elliptic curves, the execution time can be reduced.

In addition, curves of order 160-bit could be implemented. These

would still result in 80 bit of security but would require less com-

putational time. RELIC does not provide such a configuration in

the employed version. Regarding the Groth Sahai proof system,

there has been some work to optimize efficiency too. Herold et al.

proposed a transformation that speeds up verification by a factor

of two [21] and Blazy et al. applied batch verification techniques

[9]. If these optimizations were integrated into BBA+ as well, the

computational complexity of the issuer, accumulator, and verifier

could be notably reduced. Also, the user could save computations

when generating GS proofs by carefully applying the prover chosen

CRS technique from [17].

REFERENCES
[1] Masayuki Abe, Jens Groth, Kristiyan Haralambiev, and Miyako Ohkubo. 2011.

Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups. In

Advances in Cryptology – CRYPTO 2011 (Lecture Notes in Computer Science),
Phillip Rogaway (Ed.), Vol. 6841. Springer, Heidelberg, Germany, Santa Barbara,

CA, USA, 649–666.

[2] Masayuki Abe, Markulf Kohlweiss, Miyako Ohkubo, and Mehdi Tibouchi. 2015.

Fully Structure-Preserving Signatures and Shrinking Commitments. In Advances
in Cryptology – EUROCRYPT 2015, Part II (Lecture Notes in Computer Science), Elis-
abeth Oswald and Marc Fischlin (Eds.), Vol. 9057. Springer, Heidelberg, Germany,

Sofia, Bulgaria, 35–65.

[3] William Aiello, Yuval Ishai, and Omer Reingold. 2001. Priced Oblivious Transfer:

How to Sell Digital Goods. In Advances in Cryptology – EUROCRYPT 2001 (Lecture
Notes in Computer Science), Birgit Pfitzmann (Ed.), Vol. 2045. Springer, Heidelberg,

Germany, Innsbruck, Austria, 119–135.

[4] Aimia Coalition Loyalty UK Ltd. 2016. The Nectar loyalty program. Online

Resource. (2016). https://www.nectar.com/.

[5] D. F. Aranha and C. P. L. Gouvêa. 2016. RELIC is an Efficient Library for Cryp-

tography. Online Resource. (2016). https://github.com/relic-toolkit/relic.

[6] Paulo S. L. M. Barreto and Michael Naehrig. 2006. Pairing-Friendly Elliptic

Curves of Prime Order. In SAC 2005: 12th Annual International Workshop on
Selected Areas in Cryptography (Lecture Notes in Computer Science), Bart Preneel
and Stafford Tavares (Eds.), Vol. 3897. Springer, Heidelberg, Germany, Kingston,

Ontario, Canada, 319–331.

[7] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya. 2008.

P-signatures and Noninteractive Anonymous Credentials. In TCC 2008: 5th The-
ory of Cryptography Conference (Lecture Notes in Computer Science), Ran Canetti

(Ed.), Vol. 4948. Springer, Heidelberg, Germany, San Francisco, CA, USA, 356–

374.

[8] Mihir Bellare. 2015. New Proofs for NMAC and HMAC: Security Without

Collision-Resistance. Journal of Cryptology 28, 4 (2015), 844–878.

[9] Olivier Blazy, Georg Fuchsbauer, Malika Izabachène, Amandine Jambert, Hervé

Sibert, and Damien Vergnaud. 2010. Batch Groth-Sahai. In ACNS 10: 8th Interna-
tional Conference on Applied Cryptography and Network Security (Lecture Notes
in Computer Science), Jianying Zhou and Moti Yung (Eds.), Vol. 6123. Springer,

Heidelberg, Germany, Beijing, China, 218–235.

[10] Dan Boneh and Xavier Boyen. 2004. Short Signatures Without Random Oracles.

InAdvances in Cryptology – EUROCRYPT 2004 (Lecture Notes in Computer Science),
Christian Cachin and Jan Camenisch (Eds.), Vol. 3027. Springer, Heidelberg,

Germany, Interlaken, Switzerland, 56–73.

[11] Jan Camenisch, Rafik Chaabouni, and abhi shelat. 2008. Efficient Protocols for

Set Membership and Range Proofs. In Advances in Cryptology – ASIACRYPT 2008
(Lecture Notes in Computer Science), Josef Pieprzyk (Ed.), Vol. 5350. Springer,

Heidelberg, Germany, Melbourne, Australia, 234–252.

[12] Jan Camenisch, Maria Dubovitskaya, and Gregory Neven. 2010. Unlinkable

Priced Oblivious Transfer with Rechargeable Wallets. In FC 2010: 14th Interna-
tional Conference on Financial Cryptography and Data Security (Lecture Notes in
Computer Science), Radu Sion (Ed.), Vol. 6052. Springer, Heidelberg, Germany,

Tenerife, Canary Islands, Spain, 66–81.

[13] David Cash, Eike Kiltz, and Victor Shoup. 2008. The Twin Diffie-Hellman Problem

and Applications. In Advances in Cryptology – EUROCRYPT 2008 (Lecture Notes in
Computer Science), Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, Germany,

Istanbul, Turkey, 127–145.

[14] Rafik Chaabouni, Helger Lipmaa, and Bingsheng Zhang. 2012. A Non-interactive

Range Proof with Constant Communication. In FC 2012: 16th International Con-
ference on Financial Cryptography and Data Security (Lecture Notes in Computer
Science), Angelos D. Keromytis (Ed.), Vol. 7397. Springer, Heidelberg, Germany,

Kralendijk, Bonaire, 179–199.

[15] Gerhard de Koning Gans, Jaap-Henk Hoepman, and Flavio D. Garcia. 2008. A

Practical Attack on the MIFARE Classic. In Smart Card Research and Advanced
Applications: 8th IFIP WG 8.8/11.2 International Conference, Proceedings, Gilles
Grimaud and François-Xavier Standaert (Eds.). Springer, Heidelberg, Germany,

London, UK, 267–282.

13

https://www.nectar.com/
https://github.com/relic-toolkit/relic

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

[16] Taher ElGamal. 1984. A Public Key Cryptosystem and a Signature Scheme Based

on Discrete Logarithms. In Advances in Cryptology – CRYPTO’84 (Lecture Notes
in Computer Science), G. R. Blakley and David Chaum (Eds.), Vol. 196. Springer,

Heidelberg, Germany, Santa Barbara, CA, USA, 10–18.

[17] Alex Escala and Jens Groth. 2014. Fine-Tuning Groth-Sahai Proofs. In PKC 2014:
17th International Conference on Theory and Practice of Public Key Cryptography
(Lecture Notes in Computer Science), Hugo Krawczyk (Ed.), Vol. 8383. Springer,

Heidelberg, Germany, Buenos Aires, Argentina, 630–649.

[18] Flavio D. Garcia, Gerhard de Koning Gans, Ruben Muijrers, Peter van Rossum,

Roel Verdult, Ronny Wichers Schreur, and Bart Jacobs. 2008. Dismantling MI-

FARE Classic. In ESORICS 2008: 13th European Symposium on Research in Com-
puter Security (Lecture Notes in Computer Science), Sushil Jajodia and Javier López
(Eds.), Vol. 5283. Springer, Heidelberg, Germany, Málaga, Spain, 97–114.

[19] Flavio D. Garcia, Peter van Rossum, Roel Verdult, and Ronny Wichers Schreur.

2009. Wirelessly Pickpocketing a Mifare Classic Card. In 2009 IEEE Symposium
on Security and Privacy. IEEE Computer Society Press, Oakland, CA, USA, 3–15.

[20] Jens Groth and Amit Sahai. 2008. Efficient Non-interactive Proof Systems for

Bilinear Groups. In Advances in Cryptology – EUROCRYPT 2008 (Lecture Notes in
Computer Science), Nigel P. Smart (Ed.), Vol. 4965. Springer, Heidelberg, Germany,

Istanbul, Turkey, 415–432.

[21] Gottfried Herold, Julia Hesse, Dennis Hofheinz, Carla Ràfols, and Andy Rupp.

2014. Polynomial Spaces: A New Framework for Composite-to-Prime-Order

Transformations. In Advances in Cryptology – CRYPTO 2014, Part I (Lecture
Notes in Computer Science), Juan A. Garay and Rosario Gennaro (Eds.), Vol. 8616.

Springer, Heidelberg, Germany, Santa Barbara, CA, USA, 261–279.

[22] Malika Izabachène, Benoît Libert, and Damien Vergnaud. 2011. Block-Wise P-

Signatures and Non-interactive Anonymous Credentials with Efficient Attributes.

In 13th IMA International Conference on Cryptography and Coding (Lecture Notes
in Computer Science), Liqun Chen (Ed.), Vol. 7089. Springer, Heidelberg, Germany,

Oxford, UK, 431–450.

[23] Tibor Jager and Andy Rupp. 2016. Black-Box Accumulation: Collecting Incentives

in a Privacy-Preserving Way. Proceedings on Privacy Enhancing Technologies
(PoPETs) 2016, 3 (2016), 62–82.

[24] Jonathan Katz and Yehuda Lindell. 2007. Introduction to Modern Cryptography.
Chapman and Hall/CRC Press, London, UK.

[25] Yuto Kawahara, Tetsutaro Kobayashi, Michael Scott, and Akihiro Kato. 2016.

Barreto-Naehrig Curves. Internet Draft. Internet Engineering Task Force. Work

in Progress.

[26] Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. 2015. Structure-Preserving Signatures

from Standard Assumptions, Revisited. InAdvances in Cryptology – CRYPTO 2015,
Part II (Lecture Notes in Computer Science), Rosario Gennaro and Matthew J. B.

Robshaw (Eds.), Vol. 9216. Springer, Heidelberg, Germany, Santa Barbara, CA,

USA, 275–295.

[27] Milica Milutinovic, Italo Dacosta, Andreas Put, and Bart De Decker. 2015. uCen-

tive: An efficient, anonymous and unlinkable incentives scheme. In 2015 IEEE
Trustcom/BigDataSE/ISPA, Vol. 1. IEEE Computer Society Press, Helsinki, Finland,

588–595.

[28] Dustin Moody, Rene C. Peralta, Ray A. Perlner, Andrew R. Regenscheid, Allen L.

Roginsky, and Lidong Chen. 2015. Report on Pairing-based Cryptography. In

Journal of Research of the National Institute of Standards and Technology, Vol. 120.
National Insititute of Standards and Technology, Gaithersburg, MD, USA, 11–27.

[29] NXP Semiconductors Netherlands B.V. 2014. MIFARE Classic EV1 4K Product
Data Sheet Revision 3.1. NXP Semiconductors Netherlands B.V.

[30] NXP Semiconductors Netherlands B.V. 2016. MIFARE DESFire EV2 contactless
multi-application IC Data Sheet Rev. 2.0. NXP Semiconductors Netherlands B.V.

[31] David Oswald and Christof Paar. 2011. Breaking Mifare DESFire MF3ICD40:

Power Analysis and Templates in the Real World. In Cryptographic Hardware
and Embedded Systems – CHES 2011 (Lecture Notes in Computer Science), Bart
Preneel and Tsuyoshi Takagi (Eds.), Vol. 6917. Springer, Heidelberg, Germany,

Nara, Japan, 207–222.

[32] PAYBACK GmbH. 2016. The Payback loyalty program. Online Resource. (2016).

https://www.payback.net/.

APPENDIX
A CORRECTNESS FOR BBA+ SCHEMES
In this section, we formally define correctness of BBA+ schemes.

Definition A.1 (BBA+ Correctness). A BBA+ scheme BBAP is

called correct if all the following properties hold for all n ∈ N,
(CRS, td) ← Setup(1n), issuer key-pairs (pkI, skI) ← IGen(CRS),
user key-pairs (pkU, skU) ← UGen(CRS), and partiesU, I, AC,

andV honestly following the protocols.

Correctness of issuing. For all outputs of the issue protocol ((τ ,bU),
(bI)) ← Issue⟨U(pkI, pkU, skU),I(pkI, skI, pkU)⟩, it holds
that bU = bI = 1 and UVer(pkI, pkU, skU, τ , 0) = 1.

12

Correctness of accumulation. For all tokens τ , balance values

w ∈ Zp with UVer(pkI, pkU, skU, τ ,w) = 1 and all accumu-

lation values v ∈ Zp ,
13

we have that ((τ ∗, 1), (s, z, hid, 1)) ←
Accum⟨U(pkI, pkU, skU, τ ,w,v),AC(pkI, skI,v)⟩ as well as

UVer(pkI, pkU, skU, τ
∗,w +v) = 1.

Correctness of token verification For all tokens τ , balance values

w ∈ Zp with UVer(pkI, pkU, skU, τ ,w) = 1 and all accumulation

values v ∈ Zp with w + v ∈ Zp we have that ((τ ∗, 1), (s, z, hid, 1))
← Vfy⟨U(pkI, pkU, skU, τ ,w,v),I(pkI, skI,w,v)⟩ as well as

UVer(pkI, pkU, skU, τ
∗,w +v) = 1.

B FORMAL DEFINITIONS AND
INSTANTIATIONS OF BUILDING BLOCKS

In the following, we give formal definitions for the building blocks

we use in our construction, i.e., encryption, signatures, commit-

ments, and non-interactive zero-knowledge proofs, as well as present

possible instantiations of these components.

B.1 Symmetric and Asymmetric Encryption
We define symmetric and asymmetric encryption schemes. The

definitions are based on [24], except that Theorem B.1 has been

augmented by a SetupGrp algorithm.

Asymmetric Encryption (PKE).

Definition B.1 (Asymmetric Encryption). An asymmetric encryp-
tion scheme is a tuple of PPT algorithms (SetupGrp,Gen, Enc,Dec)
such that:

• SetupGrp takes as input a security parameter 1
n
and out-

puts public parameters gp. We assume that gp is given as

implicit input to all algorithms.

• Gen(gp) outputs a pair (pk, sk) of keys, where pk is the

(public) encryption key and sk is the (secret) decryption

key,

• Enc(pk,m) takes a key pk and a plaintext message m ∈
{0, 1}∗ and outputs a ciphertext c , and

• Dec(sk, c) takes a key sk and a ciphertext c and outputs a

plaintext messagem or ⊥. We assume that Dec is deter-
ministic.

Correctness is required in the usual sense. Security is defined

via experiments, given in Figs. 12 and 13. In Fig. 13 Dec(sk, ·) is
an oracle that gets a messagem from the adversary and returns

Dec(sk,m), and Dec′(sk, ·) is the same, except that it returns ⊥ on

input c∗.

Definition B.2 (CPA Security for Asymmetric Encryption). An
asymmetric encryption scheme E is IND-CPA-secure if for all PPT
adversariesA in the experiment Expind-cpa-asymE,A (n) given in Fig. 12

12
Note that verifying hat pkU is fresh and bound to a valid physical ID is not part of

Issue but needs to be done externally.

13
In practice, one would like to avoid wrap-arounds. However for sufficiently large

value space Zp (e. g. 64 Bit) and reasonable values v this concern is neglible.

14

https://www.payback.net/

BBA+: Improving Privacy-Preserving Point Collection , ,

Experiment Expind-cpa-asymE,A (n)

gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)
(state,m0,m1) ← A(1

n , pk), where |m0 | = |m1 |

b ← {0, 1}, c∗ ← Enc(pk,mb)
b′ ← A(state, c∗)
The experiment returns 1 iff b = b′.

Figure 12: CPA security experiment for asymmetric encryp-
tion.

Experiment Expind-cca-asymE,A (n)

gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)
(state,m0,m1) ← A

Dec(sk,·)(1n , pk), where |m0 | = |m1 |

b ← {0, 1}, c∗ ← Enc(pk,mb)

b′ ← ADec′(sk,·)(state, c∗)
The experiment returns 1 iff b = b′.

Figure 13: CCA2 security experiment for asymmetric en-
cryption.

the advantage of A defined by

Advind-cpaE,A =

����Pr [Expind-cpa-asymE,A (n) = 1

]
−
1

2

����
is negligible in n.

For instantiating the construction of our base protocol, we use

the well known ElGamal encryption scheme [16] which is IND-CPA-

secure under DDH assumption (implied by the SXDH assumption).

Definition B.3 (CCA2 Security for Asymmetric Encryption). An
asymmetric encryption scheme E is IND-CCA2-secure if for all PPT
adversaries A in the experiment Expind-cca-asymE,A (n) the advantage

of A defined by

Advind-ccaE,A =

����Pr [Expind-cca-asymE,A (n) = 1

]
−
1

2

����
is negligible in n.

We use the Twin-DH-based encryption scheme of Cash et al.

[13].

Symmetric Encryption (SKE).

Definition B.4 (Symmetric Encryption). A symmetric encryption
scheme is a tuple of PPT algorithms (Gen, Enc,Dec) such that:

• Gen(1n) outputs a (random) key k ,
• Enc(k,m) takes a key k and a plaintext messagem ∈ {0, 1}∗

and outputs a ciphertext c , and
• Dec(k, c) takes a key k and a ciphertext c and outputs a

plaintext messagem or ⊥. We assume that Dec is deter-
ministic.

As for asymmetric encryption, we require correctness in the

usual sense. We define a multi-message version of the IND-CCA2

security experiment in Fig. 14. It is a well-known fact that IND-

CCA2 security in the multi-message setting is equivalent to stan-

dard IND-CCA2 security. (This can be shown via a standard hybrid

argument.) In this experiment Enc(k, ·) and Dec(k, ·) denote oracles

Experiment Expind-cca-symE,A (n)

k ← Gen(1n)
(state, j ,m0,m1) ← A

Enc(k ,·),Dec(k ,·)(1n), where m0,m1 are two vectors of j ∈ N
bitstrings each such that for all 1 ≤ i ≤ j :

��m0,i
�� = ��m1,i

��
b ← {0, 1}, c∗ ← (Enc(k ,mb ,1), . . . , Enc(k ,mb , j))

b′ ← AEnc(k ,·),Dec′(k ,·)(state, c∗)
The experiment returns 1 iff b = b′.

Figure 14: Multi-message CCA2 security experiment for
symmetric encryption.

that return Enc(k,m) and Dec(k,m) for anm chosen by the adver-

sary, and Dec′(k, ·) is the same as Dec(k, ·), except that it returns
⊥ on input of any c∗i that is contained in c∗.

Definition B.5 (CCA2 Security for Symmetric Encryption). A sym-

metric encryption scheme E is IND-CCA2-secure if for all PPT

adversaries A in the experiment Expind-cca-symE,A (n) the advantage

of A defined by

Advind-ccaE,A =

����Pr [Expind-cca-symE,A (n) = 1

]
−
1

2

����
is negligible.

For example, symmetric encryption can be instantiated with AES

in CBC mode together with HMAC based on the SHA-256 hash

function. The result will be IND-CCA2-secure if AES is a pseudo-

random permutation and the SHA-256 compression function is a

PRF when the data input is seen as the key [8].

B.2 Digital Signatures
Definition B.6. A digital signature scheme SIG := (SetupGrp,

Gen, Sgn,Vfy) consists of four PPT algorithms.

• SetupGrp takes as input a security parameter 1
n
and out-

puts public parameters gp. We assume that gp is given as

implicit input to all algorithms.

• Gen takes gp as input and outputs a key pair (pk, sk). The
public key and gp define a message spaceM.

• Sgn takes as input the secret key sk and a messagem ∈ M,

and outputs a signature σ .
• Vfy takes as input the public key pk, a messagem ∈ M,

and a purported signature σ , and outputs a bit.

We call SIG correct if for all n ∈ N, gp← SetupGrp(1n), (pk, sk)
← Gen(gp),m ∈ M, σ ← Sgn(sk,m) we have 1← Vfy(pk,σ ,m).

We say that SIG is EUF-CMA secure if for all PPT adversaries

A holds that the advantage Adveuf-cma
A

(1n) defined by

Pr


Vfy(pk, σ ∗,m∗) = 1

���������
gp← SetupGrp(1n)
(pk, sk) ← Gen(gp)

(m∗, σ ∗) ← ASgn(sk,·)(1n , pk)
m∗ < {m1, . . . ,mq }


(10)

is negligible in n, where Sgn(sk, ·) is an oracle that, on input m,

returns Sgn(sk,m), and {m1, . . . ,mq } denotes the set of messages

queried by A to its oracle.

For our construction, we will use the structure-preserving signa-

ture scheme of Abe et at. [1], which is currently the most efficient

structure-preserving signature scheme. Its EUF-CMA security proof

15

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

is in the generic group model, a restriction we consider reasonable

with respect to our goal of constructing a highly efficient BBA+

scheme. An alternative secure in the plain model would be [26].

For the construction in [1], one needs to fix two additional pa-

rameters µ,ν ∈ N0 defining the actual message space. The scheme

can be described as follows.

• SetupGrp is a bilinear group generator (cf. Definition 2.1).

Let gp := (G1,G2,GT , e,p,д1,д2,дT) ← SetupGrp(1n) de-
note the output of SetupGrp(1n). Then the message space

equalsM := Gν
1
×G

µ
2
.

• Gen samples vectors x ← Zµp and y ← Zνp and integers

λ, λ′ ← Zp . The public verification key pk is defined as

pk := (дx
1
,д

y
2
,дλ

1
,дλ

′

1
) ∈ G

µ+2
1
×Gν

2

and the corresponding secret key sk as

sk := (x, y, λ, λ′) ∈ Zµ+ν+2p

• Sgn(sk, (m1,m2)) chooses r ← Zp , sets σ1 := дr
2
, σ2 :=

дλ
′−r λ

2
(
∏µ

i=1m
xi
2,i)
−1
, σ3 := дr

−1

1
(
∏ν

i=1m
yi
1,i)
−r−1

, and re-

turns σ := (σ1,σ2,σ3).
• Vfy(pk, (m1,m2),σ) returns 1 iff

e(дλ
1
,σ1)e(д1,σ2)

µ∏
i=1

e(дxi
1
,m2,i) = e(дλ

′

1
,д2)

and

e(σ3,σ1)
ν∏
i=1

e(m1,i ,д
yi
2
) = e(д1,д2)

Remark 3. We instantiate this scheme with ν = 0 and µ = 1,
because we only sign a single element (a commitment) from G2. In
this case, we have σ3 = дr

−1

1
.

B.3 Fgp-binding Commitments
Definition B.7. A commitment scheme COM := (SetupGrp,Gen,

Com,Open) consists of four algorithms.

• SetupGrp takes as input a security parameter 1
n
and out-

puts public parameters gp. These parameters also define

a message spaceM, an implicit message spaceM ′ and

a function Fgp :M →M ′ mapping a message to its im-

plicit representation. We assume that gp is given as implicit

input to all algorithms.

• Gen is a PPT algorithm, which takes gp as input and out-

puts public parameters CRScom.
• Com is a PPT algorithm, which takes as input parameters

CRS and a messagem ∈ M and outputs a commitment c
tom and some decommitment value d .

• Open is a deterministic polynomial-time algorithm, which

takes as input parameters CRS, commitment c , an implicit

messageM ∈ M ′, and opening d . It returns either 0 or 1.

COM is correct if for all gp ← SetupGrp(1n), CRS ← Gen(gp),
m ∈ M, and (c,d) ← Com(CRS,m) it holds that 1← Open(CRS,
Fgp(m), c,d).

We say that COM is a (computationally) hiding, Fgp-binding,
equivocal commitment scheme, if it has the following properties:

(1) Hiding: For all PPT adversaries A holds that the advan-

tage Advhide
A
(1n) defined by��������������

Pr


b = b′

��������������

gp← SetupGrp(1n)

CRS← Gen(gp)

(m0,m1, state) ← A(1n , CRS)

b ← {0, 1}

(c , d) ← Com(CRS,mb)

b′ ← A(c , state)


−

1

2

��������������
(11)

is negligible in n. The scheme is called statistically hiding

if Advhide
A
(1n) is negligible even for an unbounded adver-

sary A.

(2) Fgp-Binding: For all PPT adversaries A it holds that the

advantage Adv
Fgp-bind
A

(1n) defined by

Pr


Open(CRS,M , c , d) = 1

∧

Open(CRS,M ′, c , d ′) = 1

������������

gp← SetupGrp(1n)

CRS← Gen(gp)

(c ,M , d ,M ′, d ′)

← A(1n , CRS)

M , M ′


(12)

is negligible in n.
(3) Equivocal:There exists polynomial-time algorithms SimGen,

SimCom and Equiv such that for all PPT adversaries A

(a) we have that the advantage Advcom-gen
COM,A

(n) defined by����������
Pr

[
1← A(CRS)

����� gp← SetupGrp(1n),

CRS← Gen(gp)

]
− Pr

[
1← A(CRS′)

����� gp← SetupGrp(1n),

(CRS′, tdecom) ← SimGen(gp)

]
���������� (13)

is zero.

(b) we have that the advantage Adv≡COM,A (n) defined by�����������������������

Pr


1← A(CRS′, tdecom,m, c , d)

����������
gp← SetupGrp(1n),

(CRS′, tdecom) ← SimGen(gp),

m ← M,

(c , d) ← Com(CRS′,m)


− Pr


1← A(CRS′, tdecom,m, c ′, d ′)

������������

gp← SetupGrp(1n),

(CRS′, tdecom) ← SimGen(gp),

(c ′, r) ← SimCom(gp),

m ← M,

d ′ ← Equiv(CRS′, tdecom,m, r)



�����������������������
(14)

is neglible in n

Furthermore, assume that the message space of COM is an addi-

tive group. Then COM is called additively homomorphic, if there
exist additional PPT algorithms c ← CAdd(CRS, c1, c2) and d ←
DAdd(CRS,d1,d2) which on input of two commitments and cor-

responding decommitment values (c1,d1) ← Com(CRS,m1) and

(c2,d2) ← Com(CRS,m2), output a commitment c and decommit-

ment d , respectively, such that Open(CRS, c, Fgp(m1 +m2),d) = 1.

We make use of the following shrinking ℓ-message-commitment

scheme from [2]:

• SetupGrp is a bilinear group generator (cf. Theorem 2.1).

Let gp := (G1,G2,GT , e,p,д1,д2,дT) ← SetupGrp(1n) de-
note the output of SetupGrp(1n). Then the message space

equalsM := Zℓp and the implicit message space equals

16

BBA+: Improving Privacy-Preserving Point Collection , ,

M ′ := Gℓ
1
with F ′gp : M → M ′ defined by F ′gp(m1, . . . ,

mℓ) := (д
m1

1
, . . . ,дmℓ

1
).

• Gen(gp) samples x1, . . . xℓ ← Z∗p and returns CRS :=

(h1, . . . ,hℓ) := (д
x1
2
, . . . ,дxℓ

2
).

• SimGen(gp) samples x1, . . . xℓ ← Z
∗
p and returns CRS :=

(h1, . . . ,hℓ) := (д
x1
2
, . . . ,дxℓ

2
) together with tdecom := (x1,

. . . , xℓ).
• Com(CRS,m), where m = (m1, . . . ,mℓ), chooses r ← Zp

and returns (c,d) := (дr
2

∏ℓ
i=1 h

mi
i ,д

r
1
).

• SimCom(gp) chooses r ← Zp and returns (c, r) := (дr
2
, r).

• Open(CRS,M, c,d), where M = (M1, . . . ,Mℓ) ∈ Gℓ
1
re-

turns 1 if

e(д1, c) = e(d,д2)
ℓ∏
i=1

e(Mi ,hi)

and 0 otherwise.

• Equiv(CRS, tdecom,m, r), where m = (m1, . . . ,mℓ) and

tdecom = (x1, . . . , xℓ), returns d := дr
1

∏ℓ
i=1 д

−ximi
1

.

The commitment scheme described above is correct, statisti-

cally hiding, equivocal, and F ′gp-Binding, for F
′
gp(m1, . . . ,mℓ) :=

(дm1

1
, . . . ,дmℓ

1
) under the SXDH assumption [2].

B.4 Fgp-extractable NIZKs
Definition B.8. Let R be an efficiently verifiable relation contain-

ing triples (gp, x,w). We call gp the group setup, x the statement,

andw the witness. Given some gp, let Lgp be the language contain-

ing all statements x such that (gp, x,w) ∈ R. Let POK := (SetupGrp,
SetupPoK, Prove,Vfy) be a tuple of PPT algorithms such that

• SetupGrp takes as input a security parameter 1
n
and out-

puts public parameters gp. We assume that gp is given as

implicit input to all algorithms.

• SetupPoK takes as input gp and outputs a (public) common

reference string CRS.
• Prove takes as input the common reference string CRS,

a statement x , and a witness w with (gp, x,w) ∈ R and

outputs a proof π .
• Vfy takes as input the common reference string CRS, a

statement x , and a proof π and outputs 1 or 0.

POK is called a non-interactive zero-knowledge proof system for R
with Fgp-extractability, if the following properties are satisfied.

(1) Perfect completeness: For all gp← SetupGrp(1n), CRS
← SetupPoK(gp), and (gp, x,w) ∈ R, Vfy(CRS, x, π) = 1

for all proofs π ← Prove(CRS, x,w).
(2) Perfect soundness: For all (possibly unbounded) adver-

saries A we have that

Pr

 Vfy(CRS, x, π) = 0

��������
gp← SetupGrp(1n)
CRS← SetupPoK(gp)
(x, π) ← A(CRS)

x < Lgp

 = 1. (15)

(3) Perfect Fgp-extractability: There exists a polynomial-

time extractor (SetupEPoK, ExtractW) such that for all

(possibly unbounded) adversaries A

(a) we have that the advantageAdvpok-ext-setupPOK,A (n) defined

by����������
Pr

[
1← A(CRS)

����� gp← SetupGrp(1n),

CRS← SetupPoK(gp)

]
− Pr

[
1← A(CRS′)

����� gp← SetupGrp(1n),

(CRS′, tdepok) ← SetupEPoK(gp)

]
���������� (16)

is zero.

(b) we have that the advantage Advpok-extPOK,A (n) defined by

Pr


∃ w : Fgp(w) =W

∧ (gp, x ,w) ∈ R

������������

gp← SetupGrp(1n)

(CRS′, tdepok) ← SetupEPoK(gp)

(x , π) ← A(CRS′)

1← Vfy(CRS′, x , π)

W ← ExtractW(CRS′, tdepok, x , π)


(17)

is 1.

(4) Composable Zero-knowledge: There exists a polyno-

mial-time simulator (SetupSPoK, SimProof) and hint gen-

erator GenHint such that for all PPT adversaries A

(a) we have that the advantage Advzk-setupPOK,A (n) defined by������������
Pr

[
1← A(CRS)

����� gp← SetupGrp(1n),
CRS← SetupPoK(gp)

]

− Pr

1← A(CRS
′)

�������
gp← SetupGrp(1n),
hint ← GenHint(gp),

(CRS′, tdspok) ← SetupSPoK(gp, hint),



������������
(18)

is negligible in n.

(b) we have that the advantage AdvzkPOK,A (n) defined by������ Pr[1← A
SimProof′(CRS′,tdspok ,·,·)(1n , CRS′, tdspok)]

− Pr[1← AProve(CRS′,·,·)(1n , CRS′, tdspok)]

������ (19)

is negligible, where gp ← SetupGrp(1n), (CRS′,
tdspok) ← SetupSPoK(gp), SimProof′(CRS′, tdspok,
·, ·) is an oracle which on input (x, z) ∈ R, returns
SimProof(CRS′, tdspok, x). Both SimProof′ and Prove
return ⊥ on input (x, z) < R.

Remark 4. Note that Fgp-extractability actually implies soundness
independent of Fgp: If there would be a false statement x which verifies,
violating soundness, then obviously, there is no witnessw for x which
violates extractability.

Let SetupGrp be a bilinear group generator (cf. Theorem 2.1)

for which the SXDH assumption (cf. Theorem 2.2) holds and gp :=

(G1,G2,GT , e,p,д1,д2,дT) ← SetupGrp(1n) denote the output of
SetupGrp. Furthermore, let X1, . . . ,Xm1

∈ G1, x1, . . . , xm2
∈ Zp ,

Y1, . . . ,Ym3
∈ G2, and y1, . . . ,ym4

∈ Zp denote variables in the

following types of equations:

• Pairing-Product Equation (PPE):
m3∏
i=1

e(Ai ,Yi)

m1∏
i=1

e(Xi ,Bi)

m1∏
i=1

m3∏
j=1

e(Xi ,Yi)
γi , j = tT

for constants Ai ∈ G1, Bi ∈ G2, tT ∈ GT , γi , j ∈ Zp .
• Multi-Scalar Equation (MSE) over G1:

m4∏
i=1

A
yi
i

m1∏
i=1

Xbi
i

m1∏
i=1

m4∏
j=1

X
γi , jyj
i = t1

17

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

for constants Ai , t1 ∈ G1, bi ,γi , j ∈ Zp .
• Multi-Scalar Equation (MSE) over G2:

m2∏
i=1

Bxii

m3∏
i=1

Yaii

m2∏
i=1

m3∏
j=1

Y
γi , jxi
j = t2

for constants Bi , t2 ∈ G2, ai ,γi , j ∈ Zp .
• Quadratic Equation (QE) over Zp :

m4∑
i=1

aiyi +

m2∑
i=1

xibi +

m2∑
i=1

m4∑
j=1

γi , jxiyj = t

for constants ai ,bi ,γi , j , t ∈ Zp .

Let Lgp be a language containing statements described by the con-

junction of n1 pairing-product equations over gp, n2 multi-scalar

equations over G1, n3 multi-scalar equations over G2, and n4 qua-
dratic equations over Zp , where ni ∈ N0 are constants, as well as
by witnesses

w = (X1, . . . ,Xm1
, x1, . . . , xm2

,Y1, . . . ,Ym3
,y1, . . . ,ym4

) ,

where mi ∈ N0. Then the Groth-Sahai proof system for Lgp, as
introduced by [20], is perfectly correct, perfectly sound, and satisfies

Fgp-extractability [17, 20] for

Fgp : Gm1

1
× Zm2

p ×G
m3

2
× Zm4

p → Gm1

1
×Gm2

1
×Gm3

2
×Gm4

2

with

Fgp(w) := ((Xi)i ∈[m1], (д
xi
1
)i ∈[m2], (Yi)i ∈[m3], (д

yi
2
)i ∈[m4]) .

It is also known to be composable zero-knowledge [17, 20] as

long as for all PPEs in Lgp holds that either

• tT = 1 or

• the right-hand side of the PPE can be written as∏k
i=1 e(Ai ,Bi) for constants Ai ∈ G1, Bi ∈ G2, such that

for each i either Dlog(Ai) or Dlog(Bi) is known prior to

the setup of the CRS.

In the latter case, hint from Definition B.8 would contain these dis-

crete logarithms which would simply be put (as additional elements)

into the Groth-Sahai simulation trapdoor tdspok.

C SYSTEM SECURITY PROOFS
In this section, we state and prove the security properties of our

instantiation. We give a full reduction proof for the balance-binding

property (Theorem C.5) as this is by far the most involved prop-

erty. For trapdoor-linkability (Theorem C.1), owner-binding with

respect to the issue (Theorem C.2), owner-binding with respect to

accumulation and verification (Theorem C.3), and double-spending

detection (Theorem C.4), we restrict ourselves to extended proof

sketches which, however, can be easily turned into full proofs.

Theorem C.1 (Trapdoor-Linkability). If BBAP and E are cor-
rect, and P2 and P3 are perfectly sound then BBAP is trapdoor-
linkable.

Proof.

Completeness. Wewill restrict to show this property for the accu-

mulation protocol as the proof for the verification protocol is very

similar. Consider the hidden UID token hid which is part of the out-

put of AC. As π verifies and P2 is sound, we know that hid can be

generated using E.Enc with appropriate message and randomness:

there existsm ∈ G1 and r ∈ Zp such that E.Enc(pkT ,m; r) = hid.
As the message space coincides with the user public key space,m
is some valid public key pkU for which, by definition of UGen,
there is some corresponding secret key skU . As we assume that

BBAP is correct, an honest user with key pair (pkU, skU) could
have received a valid token τ by executing the Issue protocol. Then,
using pkU , skU , τ ,w = 0, and arbitrary v , this honest user could
have executed Accum successfully, which, using randomness r for
encrypting pkU , would have led to hid. Hence, any hidden user

hid appearing in a valid accumulation view, can be generated by

an honest user.

Extractability. Note that the trapdoor td consist of tdepok and

skT . We set ExtractUID(tdepok, hid) := E.Dec(skT , hid). For an
honest user, hid will be the encryption of the user’s pkU under

pkT . Hence, the output of extraction will always be pkU . �

Theorem C.2 (Owner-Binding wrt. Issue). If the CO-CDH as-
sumption holds and P1 is perfectly F

(1)
gp -extractable, then BBAP is

owner-binding with respect to Issue.

Proof. As P1 is perfectly F (1)gp -extractable, we can extract SKU ∈

G2 from the verifying proof received by Issue. As SKU satisfies the

equation

e(pkU,д2) = e(д1, SKU)

it needs to be equal to д
skU
2

. Hence, this value is a solution to an

instance of the CO-CDH problem. It is straightforward to build a

CO-CDH adversary B from an adversary A against the owner-

binding property wrt. Issue. �

Theorem C.3 (Owner-Binding wrt. Accum and Vfy). If P1,
P2, P3 are perfectly F

(1)
gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively, C

is F ′gp-binding, S is EUF-CMA secure, and E is correct, then BBAP is
owner-binding with respect to Accum and Vfy.

Proof. Let us consider the first completed and successful call of

A to eitherMalAcc orMalVer, where some pkU has been extracted,

such that, prior to that call, no successful call to MalIssue for pkU
took place. As P2 and P3 are perfectly F

(2)
gp -extractable and F

(3)
gp -

extractable, respectively, we can extract the commitment c as well
as the a signature σ on c from the verifying proof π that A sent.

Furthermore, we can extract an implicit messageM ∈ G4

1
consisting

of S ,W , p̂kU , and U1, as well as an opening value D with which

c can be opened correctly. Note that due to the perfect binding

property of any correct encryption scheme, and the soundness of

P2/P3, pkU extracted by ExtractUID indeed coincides with p̂kU ,
i.e., pkU = p̂kU .

Let us first consider the case that c did not occur in a prior,

successful call, i.e., has not been sent by I, AC, or V . Then the

extracted signature σ , is a signature on a new message, namely c ,
which has not been signed under skI before. Hence, this violates

the EUF-CMA security of S .

18

BBA+: Improving Privacy-Preserving Point Collection , ,

Now, let us consider the case that c occured before in a successful
call. First, let us assume that c has been sent by the issuer in a

successful interaction, where I received p̂kU as input. Let M̂ and

D̂ be the implicit message and opening for c we can extract from the

corresponding proof. Due to the soundness of P1, p̂kU must be part

of M̂ . As we assume that there is no successfull call toMalIssue for
pkU , it holds that p̂kU , pkU . Thus, it follows that M̂ , M which

violates the F ′gp-binding property of C. Second, we can consider

the case that c has been sent by an accumulator or verifier (as

commitment c∗) before. Using essentially the same argument (and

the assumption that this cannot be the first successful call for pkU ,

so p̂kU , pkU), we can see that this would also violate the F ′gp-
binding property. �

Theorem C.4 (Double-Spending Detection). If P1, P2, P3 are
perfectly F (1)gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively, C is additively

homomorphic and F ′gp-binding, S is EUF-CMA secure, and E is correct,
then BBAP ensures double-spending detection.

Proof. Let c1, π1 and c2, π2 denote the commitment and proof,

and s1 = s2 the token version number contained in view1 and view2,

respectively, that has been sent by the adversary. Furthermore, let

z1 = (t,u2) and z2 = (t
′,u ′

2
).

Case 1: pk(1)
U
, pk(2)

U
.

Here, we can distinguish two subcases: either c1 = c2 or c1 , c2.

(1) c1 = c2. If c1 = c2, we know, by using the perfect binding

property of E and the soundness of P2 and P3, that this
commitment can be opened using pk(1)

U
and pk(2)

U
. Hence,

by the extractability property of P2 and P3, we can extract

two valid, implicit messagesM(1) , M(2) and two openings

D(1),D(2) for the commitment c1 = c2. This violates the
F ′gp-binding property of C .

(2) c1 , c2. Here we distinguish between the case that both

commitments occured in a previous transaction and the

case that at least one of the commitments is new.

(a) c1 or c2 is new. If c1 or c2 did not occur in any previous

accumulation or verification transaction as message

sent from AC orV , respectively, or any issue trans-

action, then the EUF-CMA security of S is violated:

we can extract the corresponding signature from the

corresponding proof and this signature is on a com-

mitment which has never been signed before.

(b) c1 and c2 occured before. It remains to consider the

case that c1 , c2 did both occur in previous transac-

tions, denoted by T1 and T2. However, in this case we

have s1 = s2 only with negligible probability as they

have been uniformly chosen from Zp : Let c
′
1
, π ′

1
de-

note the commitment and proof sent by the adversary

in the previous transactionT1. From π ′
1
we can extract

an implicit message M ′
1
∈ G4

1
as well as an opening

D ′
1
which can be used to open c ′

1
. Let S ′ denote the

first andW the second component of M ′
1
. Now, ob-

serve that c1 = c
′
1
· c ′′

1
, where c ′′

1
is a commitment to

(s ′′,v, 0, 0) with s ′′ ← Zp and some v ∈ Zp (where

v = 0 in the issue protocol). c ′′
1
can be opened using

the trivial opening value 1. Then due to homomor-

phic property of C and F ′gp, c1 can be opened using

D ′
1
and messageM ′

1
with the first and the second mes-

sage component being replaced by S ′ ·дs
′′

1
andW ·дv

1
.

Hence, unless the revealed token version number s1
is different from DLogg1 (S

′)+ s ′′ it can be considered

a uniformly chosen value from Zp as s ′′ is uniformly

chosen. However, in case s1 differs, we can extract an

implicit message M1 , M ′
1
(where the first message

component equals дs1
1
) and opening value D1 from

π1 which can also be used to open c1. This violates
the F ′gp-binding property ofC . The argument for c2 is
analogous.

Case 2: IdentDS(pkI, dstag1, dstag2) , (pk
(1)

U
,Π)

Let us consider dstag
1
= (s, (t,u2)) and dstag2 = (s, (t

′,u ′
2
)), where

t = sk(1)
U
u2 + u1 and t ′ = sk(2)

U
u ′
2
+ u ′

1
. Note that IdentDS(pkI,

dstag
1
, dstag

2
) = (pk(1)

U
, sk(1)
U
) if the following conditions are sat-

isfied: sk(1)
U
= sk(2)

U
, pk(1)
U
= д

sk(1)
U

1
, u2 , u ′

2
, and u1 = u ′

1
. In the

following we show that these conditions are satisfied with over-

whelming probability and so Case 2 can only occur with negligible

probability.

Let us consider the proofs π1 and π2. We can assume that pk(1)
U
=

pk(2)
U

(otherwise Case 1 is already satisfied). From the soundness

of P2 and P3, the perfect binding property of E, and the equations

shown in the proofs, it follows that pk(1)
U
= д

sk(1)
U

1
, pk(2)
U
= д

sk(2)
U

1
, and

sk(1)
U
= sk(2)

U
. Moreover, u2 , u

′
2
with overwhelming probability as

those values are chosen uniformly at random by AC orV . Thus,

it remains to exclude the case u1 , u ′
1
. For this, we consider the

commitments c1 and c2 and distinguish between different subcases:

(1) c1 = c2. Due to the extractability of P2 and P3, we can

extract two implicit messagesM1 andM2 and correspond-

ing opening values for this commitment from π1 and π2.
M1’s last component will be дu1

1
andM2’s last component

is equal to д
u′
1

1
. Hence, F ′gp-binding of C would be violated.

(2) c1 , c2.
(a) c1 or c2 is new. If c1 or c2 has not occurred in any

previous transaction, the EUF-CMA security of S is

violated as we can extract the signature on ci from
the corresponding proof πi .

(b) c1 and c2 occurred before. As already argued in the

scope of Claim 1, this might only happen with negli-

gible probability since we assume that s1 = s2.

Case 3: IdentDS(pkI, dstag1, dstag2) = (pk(1)
U
,Π) but

VerifyGuilt(pkI, pk
(1)

U
,Π) = 0. It follows immediately from

our definition of IdentDS and VerifyGuilt that VerifyGuilt will
never output 0 in this case. �

Theorem C.5 (Balance-Binding). If P1, P2, P3 are perfectly
F
(1)
gp -, F

(2)
gp -, and F

(3)
gp -extractable, respectively, C is F ′gp-binding, S is

EUF-CMA secure, and E is correct, then BBAP is balance-binding.

19

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

Proof. Roughly speaking, we will prove our theorem by show-

ing that (i) an adversary cannot make us miscount the balance

associated with user ID pkU and (ii) he cannot overclaim or under-

claim this computed balance.

We proceed in a sequence of games. We start with the real exper-

iment ExpbbBBAP,A (n), and then gradually modify this experiment

to ensure the properties mentioned above, until we reach an ex-

periment where A has no chance to win. We show that if any

two consecutive games would significantly differ, this results in

adversaries against the security of the building blocks.

Let Game 1 be the experiment ExpbbBBAP,A (n). Let us addition-
ally assume that the experiment keeps track of the internal details

of every transaction which was successful from the issuer’s, accu-

mulator’s, or verifier’s point of view.

More precisely, for every successful MalIssue the experiment

stores a record (pkU, π , cout, s
′′,W = 1,v = 0), where pkU is the

user public key given as input to I, π is the proof sent byU, and

cout = c and s ′′ are the commitment and the random value (the

additive share of the token version number s) sent by I. More-

over, for every successfulMalAcc/MalVer the experiment stores a

record (pkU, π , cin, cout, s, s
′′,W ,v), where pkU is the public key

extracted by ExtractUID, v is the value given as input to AC/V ,

cout = c∗ and s ′′ are the commitment and the random value sent

by AC/V , π and s are the proof and the token version number

sent byU, and cin = c is the commitment extracted from π , andW
is the balance (asG1-element) which can be computed from input

w toV and which can be extracted from π in the case ofMalAcc
calls. As P2 and P3 are perfectly extractable, a verifying proof will

always allow this.

Let AdvGamei
BBAP,A (n) = Pr[ExpGamei

BBAP,A (n) = 1] denote the advan-

tage of A in Game i . Thus, by definition,

AdvGame1

BBAP,A (n) = AdvbbBBAP,A (n) (20)

To understand the changes to the original experiment done in the

following, it is best to picture the set of all successfull transactions as

a directed graph with nodes labelled by the corresponding records

as introduced above. There is an edge from node A to node B if A’s
cout label equals B’s cin label.

In Game 2, we modify the previous game as follows. The exper-

iment performs a check for every new successfulMalAcc/MalVer
transaction. Let rec := (p̂kU, π̂ , ĉin, ĉout, ŝ, ŝ

′′,Ŵ , v̂) denote the

record of this new transaction. Then the experiment checks all pre-

viousMalIssue,MalAcc, andMalVer records whether there exists
a record satisfying cout = ĉin. If this is not the case, the experiment

immediately aborts and returns 0. We call this event failure event

F1 (no predecessor commitment). Note that if this event happens,

the signature σ extractable from π̂ is a valid signature on the new

message ĉin, due to the soundness of P2 or P3.
Hence, we can construct an EUF-CMA adversary B against S

with advantage

Adveuf-cma
S,B (n) = Pr[F1] (21)

Note that if the failure event does not happen, every commitment

cin from a MalAcc/MalVer record has been generated in a previ-

ous transaction. Hence, the indegree of every node representing a

accumulation/verification transaction is at least one.

In Game 3, we again modify the previous game. The experi-

ment now additionally checks whether ĉin occurs in more than one

previous transaction records as cout. As soon as this happens, the

experiment immediately aborts and returns 0. We call this event,

failure event F2 (two predecessor commitments). Let us consider

two such previous records rec1 and rec2 and let s ′′
1
and s ′′

2
be the

random numbers sent toU in these records, respectively. Then we

can split up the event into two events F
(s ′′
1
,s ′′

2
)

2
and F

(s ′′
1
=s ′′

2
)

2
. In the

event F
(s ′′
1
,s ′′

2
)

2
, it additionally holds that s ′′

1
, s ′′

2
. Analogously, in

the event F
(s ′′
1
=s ′′

2
)

2
, it additionally holds that s ′′

1
= s ′′

2
. Note that

Pr[F
(s ′′
1
=s ′′

2
)

2
] = Pr[F2 ∧ s ′′

1
= s ′′

2
] ≤

m2

p
, (22)

where m is a polynomial bound on the number of MalAcc and

MalVer queries.

Let us now consider the event F
(s ′′
1
,s ′′

2
)

2
. As already argued in

the proof sketch for Theorem C.4, in this case we can extract two

valid openings for ĉ such that the corresponding implicit message

vectors differ in the token version number component.

Hence, we can construct F ′gp-binding adversary C1 against C
with advantage

Adv
Fgp-bind
C,C1

(n) = Pr[F
(s ′′
1
,s ′′

2
)

2
] (23)

Note that if none of the failure events happen, every commitment

cin from aMalAcc/MalVer record has been generated in exactly one
previous transaction. Hence, the indegree of every node represent-

ing a accumulation/verification transaction is at exactly one.

In Game 4, we modify the previous game as follows. The exper-

iment additionally checks whether ĉ already occurred as cin in a

previous MalAcc/MalVer record. If this is the case, the experiment

immediately aborts and returns 0. We call this event, failure event

F3 (two successor commitments). Let us consider such a previous

record rec containing token version number s and proof π . Then

we split up the event into the eventF
(s,ŝ)
3

where additionally holds

that s , ŝ and the event F
(s=ŝ)
3

where additionally holds that s = ŝ .
Note that

Pr[ExpGame1

BBAP,A (n) = 1 ∧F
(s=ŝ)
3
] = 0 (24)

due to the winning conditions of A. If F
(s,ŝ)
3

happens, we can

extract two implicit messages M̂ , M and opening values D̂ and D
from π̂ and π , respectively, which can be used to open ĉin = cin.

Hence, we can construct F ′gp-binding aversary C2 against C with

advantage

Adv
Fgp-bind
C,C2

(n) = Pr[F
(s,ŝ)
3
] (25)

Note that if none of the failure events happen, every commitment

cin from a MalAcc/MalVer record has been generated by exactly

one previous transaction and the corresponding cout is used in at

most one subsequent transaction. Hence, the indegree of every node

representing a accumulation/verification transaction is at exactly

one and its outdegree is at most one.

In Game 5, we add yet another check: The experiment addi-

tionally checks for each newMalAcc/MalVer record, whether for
previous records where ĉ occurred as cout (there is exactly one by

now) also holds that p̂kU appears as pkU . In other words, we check

if the same user is associated with both the transaction generating

20

BBA+: Improving Privacy-Preserving Point Collection , ,

ĉ and the transaction making use of ĉ . If this is not the case for the
first time, the experiment immediately aborts and returns 0. We

call this event, failure event F4 (miscount). Let us consider such

a previous record rec containing proof π and user id pkU . As all
proofs are extractable and the hidden id token is perfectly binding,

we can now extract two different messages (which at least differ

in the third component since p̂kU , pkU) and opening values for

ĉin = cin from π̂ and π .
Hence, we can again construct an F ′gp-binding aversaryC3 against

C with advantage

Adv
Fgp-bind
C,C3

(n) = Pr[F4] (26)

Note that if none of the failure events happen, the following holds

for every every commitment cin and cout from a MalAcc/MalVer
record: cin has been generated by exactly one previous transaction

and cout is used in at most one subsequent transaction. All three

transactions are associated with the same user ID. Hence, if we

picture the set of all successfull transactions as a directed graph,

all paths are labelled with exactly one user ID. Moreover, for each

user ID there is at most one such path, since there might be at most

one issue transaction for a fixed pkU . So to compute the legitimate

balance for pkU one just has to walk along the corresponding path

and add up the v values.

In Game 6, we check for over- and underclaims along the path:

The experiment additionally checks for each newMalAcc/MalVer
record, whether for its predecessor record (cout = ĉin) holds that
Ŵ = Wдv

1
. Otherwise, a wrong balance has been successfully

claimed in the new transaction. If this the case, the experiment

immediately aborts and returns 0. We call this event, failure event

F5 (wrong claim). If this event happens, we can easily extract two

different openings for ĉin from π̂ and π which differ in the balance

component of the message.

Hence, we can again construct an F ′gp-binding aversaryC4 against
C with advantage

Adv
Fgp-bind
C,C4

(n) = Pr[F5] (27)

Moreover, note that if none of the failure events happened, then

what has been counted as balance for pkU up to a MalVer call
coincides with the claimed balance. Hence, the adversary cannot

win this game.

Putting things together. Considering Eq. (20) through Eq. (27)

we obtain

AdvGame1

BBAP,A (n) = Pr

[
ExpGame1

BBAP,A (n) = 1 ∧ ¬

(∨
5

i=1Fi

)]
+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧

(∨
5

i=1Fi

)]
= AdvGame6

BBAP,A (n)

+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧

(∨
5

i=1Fi

)]
≤ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F2

]
+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F3

]
+ Pr[F1] + Pr[F4] + Pr[F5]

= Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F
(s ′′
1
,s ′′

2
)

2

]
+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F
(s ′′
1
=s ′′

2
)

2

]
+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F
(s,ŝ)
3

]
+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F
(s=ŝ)
3

]
+ Pr[F1] + Pr[F4] + Pr[F5]

≤ Pr[F
(s ′′
1
,s ′′

2
)

2
] + Pr[F

(s ′′
1
=s ′′

2
)

2
] + Pr[F

(s,ŝ)
3
]

+ Pr

[
ExpGame1

BBAP,A (n) = 1 ∧F
(s=ŝ)
3

]
+ Pr[F1] + Pr[F4] + Pr[F5]

≤ Adv
Fgp-bind
C,C1

(n) + m2

p

+ Adv
Fgp-bind
C,C2

(n) + Adveuf-cma
S,B (n)

+ Adv
Fgp-bind
C,C3

(n) + Adv
Fgp-bind
C,C4

(n)

(28)

Asm is polynomial in n and we assume that S is EUF-CMA secure

and C is F ′gp-binding, it follows that A’s advantage is negligible.

�

D USER SECURITY AND PRIVACY PROOFS
In this section, we show that our construction in Section 5 is privacy-

preserving according to Theorem 4.7. Before we state our theorem

formally, we define a sequence of games Game 1, . . . , Game 6. In

the proof after Theorem D.1 we show that each pair of consecutive

games can only be distinguished with negligible probability.

Game 1 denotes the game where all oracles are running the

real protocol and the last Game 6 denotes the game where the or-

acles are replaced by SimHonIssue, SimHonAcc, SimHonVer and
SimCorrupt respectively. We denote the experiment with an adver-

sary A playing the game i by ExpGamei
BBAP,A . As in the real protocols

theUsim algorithm outputs a tuple (·,b) with b ∈ {0, 1} to the ora-

cle to indicate if the protocol execution had been successful from

the user’s perspective. If an error is reported to the oracle, the oracle

replies with ⊥-messages to the adversary in any future call for the

same pkU to mimic the real behavior. In the following we give

a rough overview about the games. We write Setupi , HonIssuei ,
HonAcci , HonVeri , and Corrupti to denote the implementations of

the oracles in the game i . The oracle HonUser remains unchanged

in all games.

In Game 1 we set Setup
1
= Setup, HonIssue1 = RealHonIssue,

HonAcc1 = RealHonAcc, HonVer1 = RealHonVer and Corrupt
1
=

RealCorrupt as in Figures 8 to 11. In other words ExpGame1

BBAP,A and

Exppriv-realBBAP,A are identical.

21

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

In Game 2 we modify Setup
2
such that CRSpok and CRScom are

not created by SetupPoK(gp) and Gen(gp) resp., but by (CRSpok,
tdspok) ← SetupSPoK(gp, hint) and (CRScom, tdecom) ← SimGen(gp)
(cp. Theorems B.7 and B.8). Moreover, we set hint := tdecom, i. e.
the simulator of the NIZK scheme also gets the equivocation trap-

door of the commitment scheme. Otherwise the Groth-Sahai proof

system cannot be proven zero-knowledge for the particular type

of equations used here. The simulator SimProof needs to know the

discrete logarithms of the fixed constants on the right hand-side

of the statement in order to successfully simulate a proof. These

constants happen to be the group elements used in the commitment

scheme and are chosen before the actual statement.

In Game 3 we redefine HonIssue3, HonAcc3 and HonVer3 such
that the oracles (playing the role of the user) send simulated proofs

to the adversary. E. g. instead of executing P1.Prove, P2.Prove,
P3.Prove (cp. Figs. 9 and 11) the code of the simulator SimProof′.14

In Game 4 the commitments of the user during an interaction

within HonIssue4, HonAcc4, or HonVer4 are not created by C.Com
but by C.SimCom. If a user is corrupted by calling Corrupt

4
, the

simulated commitment inside the token is equivoked via C.Equiv
before returning the token τ to the adversary such that the commit-

ment contains the correct user key skU and the correct balancew .

Moreover, some additional precautions are necessary such that

UVer at the end of HonIssue4, HonAcc4 or HonVer4 behaves as

expected. Without a corresponding decommitment d ′ the simu-

lated commitment is information-theoretic empty and thus UVer
cannot be called. However, UVer cannot be omitted as otherwise

the operator could try to cheat on the user (by adding a wrong

value ṽ) and check if the user detects such a cheating. This would

give the adversary a strategy to distinguish between a real and

ideal simulation. For this reason, the original commitment that has

been sent to the operator is equivoked as if it had contained the

balancew = 0 and the private key skU = 0 and then the resulting

commitment is verified if it contains the new balancew∗ = v and

the user id pkU = д0
1
= 1. As the ZK-statements are nor longer

valid, the simulator SimProof is called directly without the wrapper
SimProof′.

In the Game 5 we modify HonAcc5 and HonVer5 such that t is
randomly chosen and (u2, t) is not necessarily a point on the line

t = skUu2 + u1 mod p.
In Game 6 the encryption of pkU for the hid for HonAcc6 and

HonVer6 is replaced by an encryption of д0
1
= 1. The clear-text pkU

of HonIssue6 remains unchanged, because the true pkU is part of

the statement and must not be changed or otherwise the issuer

would notice a difference. We note that ExpGame6

BBAP,A and Exppriv-idealBBAP,A
are identical. See Figs. 15 to 18 for the details of all modifications.

Remark 5 (Global State for Oracles). Please note that all
the oracles HonUser, HonIssue, HonAcc, HonVer and Corrupt use a
joint, global state. This global state stores the skU , the current balance
w and the last message sent from the adversary to the user for each
user pkU . This is necessary as the adversary is the only operator in
the privacy game and thus knows what balancew and what signature
σ is expected upon corruption of a particular user. This global state

14
N.b.: To be precise, there are three different simulators SimProof′: one that simulates

proof for each of P1.Prove, P2.Prove and P3.Prove

U(pkI , tdsim, pkU) I(pkI , skI , pkU)

s′, u1 ← Zp
(c′, r ′) := C.SimCom(gp)

x := (c′, pkU)

π := P1.SimProof(CRSpok, tdspok, x)

c′, π

x := (c′, pkU)

if P1.Vfy(CRSpok, x , π) = 0

return 0

s′′ ← Zp
(c′′, d ′′) = C.Com(CRScom,

(s′′, 0, 0, 0))

c := c′ · c′′

σ = S.Sgn(sksig, c)

c , d ′′, σ , s′′

s := s′ + s′′ mod p

d := C.Equiv(CRScom,

tdecom, (s , 0, 0, u1), r ′) · d ′′

τ := (c , d , σ , s , u1)

if UVer(pkI , 1, 0, τ , 0) = 0

return (⊥, 0)

else return (⊥, 1) return 1

Figure 15: Issue protocol of Game 6

Usim(pkI , tdsim, v) AC(pkI , skI , v)

u2 ← Zp

u2

t ← Zp
r , s′, u′

1
← Zp

hid := E.Enc(pkT , 1; r)

(c′, r ′) := C.SimCom(gp)

x := (c′, (дs
1
, t , u2), hid)

π = P2.SimProof(CRSpok, tdspok, x)

c′, s , t , π , hid

z := (t , u2)

dstag := (s , z)

x := (c′, (дs
1
, t , u2), hid)

if P2.Vfy(CRSpok, x , π) = 0

return (⊥, ⊥, 0)

s′′ ← Zp
(c′′, d ′′) := C.Com(CRScom,

(s′′, v , 0, 0))

c∗ := c′ · c′′

σ ∗ = S.Sgn(sksig, c∗)

c∗, d ′′, σ ∗, s′′

s∗ := s′ + s′′ mod p

d∗ := C.Equiv(CRScom,

tdecom, (s′, 0, 0, u′1), r
′) · d ′′

w∗ := v

u∗
1
:= u′

1

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

if UVer(pkI , 1, 0, τ
∗,w∗) = 0

return (⊥, 0)

else return(⊥, 1) return (dstag, hid, 1)

Figure 16: Accumulation protocol of Game 6

22

BBA+: Improving Privacy-Preserving Point Collection , ,

Usim(pkI , tdsim,w , v) V(pkI , skI ,w , v)

u2 ← Zp

u2

t ← Zp
r , s′, u′

1
← Zp

hid := E.Enc(pkT , 1; r)

(c′, r ′) := C.SimCom(gp)

x := (c′, (дs
1
, t , u2), hid, дw1)

π = P3.SimProof(CRSpok, tdspok, x)

c′, s , t , π , hid

z := (t , u2)

dstag := (s , z)

x := (c′, (дs
1
, t , u2), hid, дw1)

if P3.Vfy(x , π) = 0

return (⊥, 0)

s′′ ← Zp
(c′′, d ′′) := C.Com(CRScom,

(s′′, v , 0, 0))

c∗ := c′ · c′′

σ ∗ = S.Sgn(sksig, c∗)

c∗, d ′′, σ ∗, s′′

s∗ := s′ + s′′ mod p

d∗ := C.Equiv(CRScom,

tdecom, (s′, 0, 0, u′1), r
′) · d ′′

w∗ := v

u∗
1
:= u′

1

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

if UVer(pkI , 1, 0, τ
∗,w∗) = 0

return (⊥, 0)

else return(⊥, 1) return (dstag, hid, 1)

Figure 17: Verification protocol of Game 6

Corrupt(pkU)
Get the latest commitment c∗ and signature σ ∗ that were sent by
the adversary during an HonAcc or HonVer to the oracle for this

pkU . Let r
′
be the equivocation information that was created by

C.SimCom during that interaction. Let w we the recent balance of

the user that the adversary expects due to all interactions in HonAcc
or HonVer.
s∗, u∗

1
← Zp

d∗ := C.Equiv(CRScom, tdecom, (s′,w , skU , u
′
1
), r ′)

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

return (pkU , skU , τ
∗,w)

Figure 18: Corruption algorithm of Game 6

is never read (only updated) by HonIssue, HonAcc, or HonVer and
thus privacy is guaranteed as long as the user is uncorrupted.

Theorem D.1. If P1, P2, P3 are composable zero-knowledge, C is
equivocable and E is IND-CPA secure, thenBBAP is privacy-preserving
(cp. Theorem 4.7).

Proof. From Game 1 to Game 2: This game hop only changes

how the the CRS is created during the setup phase. However, this

is indistinguishable for both CRSpok and CRScom (see the compos-

able zero-knowledge property of Theorem B.8 and the equivocality

property of Theorem B.7, resp., condition (a) each)

From Game 2 to Game 3: This game hop replaces the real proofs

by simulated proofs. Note that we prove valid statements, hence

SimProof returns an actual proof π and not ⊥. We proof the in-

distinguishability of this both games by a nested game-hopping

argument and three reductions to the composable zero-knowledge

property of the NIZK. First all proofs of the proof system P1 are
replaced by simulated proofs. Assume there exists an adversary

A ′ that notices a difference. Then we can construct an adversary

A that has a non-negligible advantage AdvzkPOK,A (n). Internally A
runsA ′ and simulates all user oracles (HonIssue,HonAcc,HonVer,
. . .) forA ′. All calls to P1.Prove are forwarded byA to its own ora-

cle in the challenge game which is either P1.Prove or P1.SimProof.
A outputs whatever A ′ outputs. This completes the description

of the first sub-experiment. In the second step all proofs of the

proof system P2 are replaced by simulated proofs. Assume that

there exists an adversary B′ that notices a difference. Again, we

construct an adversary B that externally plays the ZK-game of the

proof system P2 and internally runsB′. However, this timeB needs

to give simulated proofs for P1, if it internally plays the role of the

user within the scope of HonIssue. Note, that the adversary B also

gets the simulation trapdoor tdspok in the ZK-game, hence B can

run P1.SimProof itself. In the third sub-experiment all proofs of

P3 are replaced by simulated ones using the same proof argument

again.

FromGame 3 to Game 4: Assume there is an adversaryA ′ that no-

tices a difference between ExpGame3

BBAP,A and ExpGame4

BBAP,A . Again we ar-

gue by a sequence of nested games Game3,0 to Game3,m = Game4.

In game Game3, j the first j commitments are replaced by simu-

lated commitments while all commitments from j + 1 to m are

real. As the commitment consists of a single message, this order-

ing is well-defined. As A ′ notices a difference between Game3,0

to Game3,m there must be an index j ∈ [m] such that A ′ can

distinguish Game3, j and Game3, j−1. We use this to construct an

adversary A against the equivocality of the commitment scheme

(cp. Theorem B.7, Item 3b). Internally, A runs A ′ and simulates

the user oracles for A ′. A can equivoce the first j − 1 commit-

ments internally, because A also get the equivocation trapdoor

as its input. A forwards the j’th commitment to the challenger

and plays all remaining commitments real. Then A has the same

advantage Adv≡COM,A (n) asA
′
in distinguishing between Game3, j

and Game3, j−1.

From Game 4 to Game 5: We have to distinguish two cases: (a)

this interaction follows a corruption for the same user pkU , or (b)

the preceding interaction for the same user was any other oracle

call but Corrupt. In case (b) this game does not change anything

from the adversaries perspective. Asu1 is uniformly chosen in every

interaction, the user uses a new linear equation every time, hence

t = skUu2+u1 is uniform as well and we have already removed any

other dependence on u1 in the previous game hops. However, in

case (a) the adversary knows the latest value u1 that will be used by
the user in the next interaction. As u2 is chosen from the adversary

anyway, the adversary is able to check if (u2, t) := (u2, pkUu2 +u1)
23

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

mod p is actually a point on the correct line. For this reason the

real algorithm of the user is executed in the interaction that follows

a corruption.

From Game 5 to Game 6: First note, that hid never gets decrypted

and the secret key is unknown to the adversary. Assume that there is

an efficient adversaryA ′ that can distinguish between ExpGame5

BBAP,A

and ExpGame6

BBAP,A . Again we construct a sequence of nested games

Game5,0 to Game5,m = Game6, whereby Game
5,k denotes the

game in that the first k sessions encrypt the constant д1 for hid and

the remaining sessions encrypt the real pkU . IfA ′ can distinguish

Game
5,k from Game

5,k+1, then we can construct an efficient ad-

versary A against the IND-CPA security of the encryption scheme.

Internally, A runs A ′ plays the honest user oracles for A ′ and ei-

ther asks the challenger to encrypt either the real pkU or д1 during
the k’th session. A outputs whatever A ′ outputs. �

Finally, we prove that our BBA+ scheme also protects the user

against a false accusation of double-spending according to Theo-

rem 4.8. The proof is almost generic in the sense that the statement

is nearly immediately implied by the privacy property of the BBA+

scheme.

Theorem D.2. If BBAP is privacy-preserving and the calculation
of discrete logarithms in G1 is a computationally hard problem, then
BBAP is secure against false accusation of double-spending.

Proof. Assume there is an efficient adversary A that breaks

the false-accusation protection (cp. Theorem 4.8). Observe that

the adversary A in the experiment ExpfacpBBAP,A (n) (see. Fig. 7) has

access to the oracles RealHonIssue, RealHonAcc, RealHonVer for
exactly one user identity pkU that was chosen by the experiment

in advance. This is a strict subset of the oracles an adversary in

the privacy game is allowed to use. We replace all these oracles

by simulated oracles SimHonIssue, SimHonAcc, SimHonVer and
distinguish two cases:

(1) Either A still outputs a valid proof Π of guilt with non-

negligible probability. Essentially, this means the adversary

outputs the discrete logarithm skU of pkU . All simulation

oracles are PPT and are – except for pkU – only equipped

with input that is information-theoretic independent of

skU . Hence, we could construct an adversaryA ′ that gets

pkU as input, incorporatesA together with all oracles and

outputs the discrete logarithm of pkU . This contradicts
the CDH assumption.

(2) Or A is not able to output a valid proof Π of guilt any-

more, i. e. we have VerifyGuilt(CRS, pkU,Π) = 0 with

overwhelming probability. In this case we can use A to

construct an efficient adversaryA ′ that breaks the privacy

of our BBA+ scheme. FirstA ′ generates a user honestly for

A by using its own HonUser oracle in the privacy game.

Then A ′ executes A and forwards all oracle calls to its

own oracles. AfterA has terminatedA ′ returns the result

of VerifyGuilt(CRS, pkU,Π) as its own output to the ex-

periment. Hence, A ′ uses the validity of the proof of guilt

Π to distinguish a real or ideal execution. �

E FULL-FLEDGED SECURITY MODEL
In this section, we outline an extended security model for BBA+

schemes, where malicious users may additionally corrupt honest

users and passively eavesdrop on protocol executions between

honest users and the issuers, accumulators and verifiers. In particu-

lar, we give alternative, more general definitions for the following

security properties:

• owner-binding with respect to Issue,
• owner-binding with respect to Accum and Vfy,
• balance-binding,

• double-spending detection, and

• false accusation protection.

The security experiments we give in this section resemble the ones

from Section 4.3.

We claim that if a scheme fulfills our simplified security defini-

tions given in Section 4.3, then the scheme (or at least an encrypted

version of that scheme) is secure according to the following defini-

tions. Note though, that we have not conducted formal proofs for

this. Proof sketches are given in Appendix F. We first explain the

key differences for the first four security properties (protecting the

issuer from dishonest users), before we move to false accusation

protection and privacy (protecting the users from the issuer).

E.1 System Security
Our alternative definitions for the first four properties given above

are more general in that most of them provide the adversary with

additional oracles. Using these oracles, the adversary may instruct

a number of honest users to engage in protocol executions and

obtain the transcripts of these executions. With respect to these

honest users the adversary is passive: It may not tamper with the

communication between the honest users and the issuer. It may also

not force a user to behave maliciously or run protocols concurrently

but only sequentially just as an honest user would always do.
15

The adversary may at any time (after a completed protocol run)

corrupt one of the honest users and receive all of his secrets (like

the BBA+ token, the user secret key, etc.) in this way. From this

point on, the adversary can impersonate this user and the user may

not be instructed anymore to engage in any protocols. In fact, the

adversary could also play the role of the honest user if he wishes

to do so.

Apart from being able to eavesdrop on honest users, the ad-

versary may additionally participate in protocol executions with

honest issuers, accumulators and verifiers as a malicious user, as

in Section 4.3. In these protocol executions, the adversary may

arbitrarily deviate from the protocol.

We now specify the additional oracles that the adversary may

access:

• HonUser and Corrupt, as defined in Section 4.4.

• HonIssue(pkU) lets the honest user with public key pkU
generated by HonUser() run the Issue protocol with an

honest issuer provided that pkU has not been used before

15
We leave creating a BBA+ scheme that has provable security against active attackers

as an open problem. We believe that our base scheme can be converted to achieve

active security by having messages transmitted over a secure channel, i.e. a channel

that does not just ensure confidentiality (as our encryption does) but also integrity,

message ordering, replay protection and the like. Proving this is future work.

24

BBA+: Improving Privacy-Preserving Point Collection , ,

Experiment Expob-issue-fullBBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AHonUser,HonIssue,HonAcc,HonVer,Corrupt,MalIssue,MalAcc,MalVer(CRS, pkI)
The experiment returns 1 iff A did a successful call to MalIssue on input of a public-key

pkU generated byHonUser for whichCorrupt has not been executed up to thisMalIssue-
call.

Figure 19: Alternative owner-binding experiment for BBAP
with respect to Issue.

in a successful call to HonIssue or MalIssue, and there is

no pendingMalIssue call for pkU . The latter ensures we
only have a single token issued per user public key.

• HonAcc(pkU,v) lets the honest user with public key pkU
generated by HonUser() run the Accum protocol with

the honest issuer I on common input v ∈ Zp , pro-
vided thatHonIssue(pkU) has successfully been called and
Corrupt(pkU) has not been called before. In this protocol

run, the user will use the the most recent BBAP token τ
and balance valuew (received in the previous call for pkU ,

which might have been a HonIssue, HonAcc or HonVer
call).

• HonVer(pkU,v) lets the honest user with public key pkU
generated by HonUser() run the Vfy protocol with the

honest issuer I on common input v ∈ Zp , and w ∈ Zp ,
wherew is the current balance of the user with public key

pkU . This oracle may only be called if HonIssue(pkU) has
sucessfully been called and Corrupt(pkU) has not been
called before. In this protocol run, the user will use the the

most recent BBAP token τ and balance valuew .

The oracles HonIssue, HonAcc and HonVer return the transcript of

all exchanged protocol messages to the adversary.

In addition to these oracles, the adversaryAmay call theMalIssue,
MalAcc, and MalVer oracles as defined in Section 4. However, A

may not callMalIssue on input of a public key that has been used

with HonIssue before.
each user no oracle can be called concurrently, i. e. for any arbi-

trary but fixed pkU another oracle can only invoked if no previous

oracle call for the same pkU is still pending.

We are now ready to state the modified security experiments

and definitions. As stated before, they differ in the oracles available

to the attacker, and the winning conditions have been adjusted

accordingly. The security experiment for the following definition

is given in Fig. 19. (The definition itself is completely analogous to

Theorem 4.3.) In this experiment, the adversary needs not register

a specific key pkU via the Issue protocol, but may choose among

the keys generated by the HonUser oracle.

Definition E.1. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Issue under eavesdropping on honest
users if for any PPT adversaryA in the experiment Expob-issue-fullBBAP,A (n)

the advantage of A defined by

Advob-issue-fullBBAP,A (n) := Pr[Expob-issue-fullBBAP,A (n) = 1] (29)

is negligible in n.

Theorem E.2 demands that an adversary may not be able to

successfully call the accumulation or verification protocols for a

Experiment Expob-acc-fullBBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AHonUser,HonIssue,HonAcc,HonVer,Corrupt,MalIssue,MalAcc,MalVer(CRS, pkI)
The experiment returns 1 iff A did a successful call to MalAcc or MalVer such that

ExtractUID applied to the hid being part of the view of this call outputs a public-key pkU
for which

– there has been no successful execution ofMalIssue or HonIssue or
– there has been a successful execution of HonIssue but no call to Corrupt

up to thisMalAcc/MalVer-call.

Figure 20: Alternative owner-binding experiment for BBAP
with respect to Accum.

Experiment Expbb-fullBBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AHonUser,HonIssue,HonAcc,HonVer,Corrupt,MalIssue,MalAcc,MalVer(CRS, pkI)
The experiment returns 1 iff A did a successful call to MalVer resulting in a view

view = (pkI , skI ,w , v ,msgs, s , z, 1) ∈ VVfy
n,CRS and extracted user public-key

pkU ← ExtractUIDVfy(td, view) such that the following conditions are satisfied:

– all successful MalIssue and MalAcc calls resulted in different token version num-

bers and

– the claimed balance w ∈ Zp does not equal the sum of previously collected accu-

mulation values v for pkU , i.e.,

w ,
∑

v∈VpkU

v ∈ Zp ,

whereVpkU is the list of all accumulation valuesv ∈ Zp that appeared in previous

calls to MalAcc, HonAcc or MalVer, HonVer for which pkU could be extracted

using ExtractUID.

Figure 21: Balance binding experiment for BBAP.

forged token or a token not owned by him but an honest user.

Note that a token is owned by the adversary if he has created this

token by calling MalIssue or if the token belongs to a corrupted,

previously honest user.

Definition E.2. A trapdoor-linkable BBA+ scheme BBAP is called

owner-binding with respect to Accum and Vfy under eavesdrop-
ping on honest users if for any PPT adversary A in the experiment

Expob-acc-fullBBAP,A (n) from Fig. 20 the advantage of A defined by

Advob-acc-fullBBAP,A (n) := Pr[Expob-acc-fullBBAP,A (n) = 1] (30)

is negligible in n.

The following definition for the balance-binding property is

analogous to the definition from Section 4.3, except that it has been

adapted to account for the additional oracles.

Definition E.3. A trapdoor-linkable BBA+ scheme BBAP is called

balance-binding under eavesdropping on honest users if for any PPT

adversary A in the experiment Expbb-fullBBAP,A (n) from Fig. 21 the

advantage of A defined by

Advbb-fullBBAP,A (n) := Pr[Expbb-fullBBAP,A (n) = 1] (31)

is negligible in n.

Theorem E.4 enforces that two transactions leading to the same

token version number have always been initiated by the same user

and that this user can be identified.

Definition E.4. A trapdoor-linkable BBA+ scheme BBAP ensures

double-spending detection under eavesdropping on honest users if
25

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

Experiment Expdsd-fullBBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
b ← AHonUser,HonIssue,HonAcc,HonVer,Corrupt,MalIssue,MalAcc,MalVer(CRS, pkI)
The experiment returns 1 iff A did two successful MalAcc/MalVer calls resulting in

two views view1 and view2 including two double-spending tags dstag
1
= (s , z1) and

dstag
2
= (s , z2) and extracted user public-keys pk

(1)

U
and pk(2)

U
(using ExtractUID) such

that one of the following conditions is satisfied:

– pk(1)
U
, pk(2)

U
or

– IdentDS(dstag
1
, dstag

2
) , (pk(1)

U
, Π) or VerifyGuilt(pkI , pk

(1)

U
, Π) = 0

Figure 22: Double-spending detection experiment for BBAP.

Experiment Expfacp-fullBBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , state) ← A(CRS)
(pkU , Π) ←

AHonUser,HonIssue,HonAcc,HonVer,Corrupt(state)
The experiment returns 1 iff pkU is a public-key generated byHonUser for whichCorrupt
has not been called and VerifyGuilt(pkI , pkU , Π) = 1.

Figure 23: False accusation protection experiment for BBAP.

for any PPT adversary A in the experiment Expdsd-fullBBAP,A (n) from

Fig. 22 the advantage of A defined by

Advdsd-fullBBAP,A (n) := Pr[Expdsd-fullBBAP,A (n) = 1] (32)

is negligible in n.

E.2 User Security and Privacy
We now move to the security definitions for protecting users from

malicious issuers.

We give an alternative definition for the false accusation protec-

tion property, where the adversary may additionally corrupt honest

users. Furthermore, the adversary is not restricted to produce a

convincing double-spending proof against a specific public key

pk∗
U
, but A may pick any pkU output by the HonUser oracle.

We don’t provide the adversary with the MalIssue, MalAcc or
MalVer oracles, since these oracles would model interactions in

which both parties are corrupted, and the attacker could simulate

such interactions for itself.

Definition E.5. A trapdoor-linkable BBA+ scheme BBAP ensures

false-accusation protection under eavesdropping on honest users if
for any PPT adversary A in the experiment Expfacp-fullBBAP,A (n) from

Fig. 23 the advantage of A defined by

Advfacp-fullBBAP,A (n) := Pr[Expfacp-fullBBAP,A (n) = 1] (33)

is negligible in n.

We do not give an alternative definition for privacy.

F RELATION BETWEEN OUR SECURITY
MODELS

In this section, we argue that a BBA+ scheme that is secure ac-

cording to our simplified security definitions (given in Section 4) is

secure in the more complex security model given in Appendix E, if

all messages sent during the HonIssue, HonAcc and HonVer proto-
cols are encrypted as described in Appendix F.1. Proof sketches are

given in Sections F.2–F.6.

F.1 Extending security by encryption
AnyBBA+ base protocol can be transformed to an encrypted scheme

as follows:

• During issuer key generation, additionally generate a group

description gpSetupGrp(1n) and a key-pair (pkEnc, skEnc)
of a secure PKE scheme and include pkEnc and skEnc in the

issuer’s public and secret key, respectively.

• In the protocols Issue, Accum and Vfy, before the first mes-

sage is sent, let the user choose a random key k for an

IND-CCA2-secure symmetric encryption scheme, encrypt

it under pkEnc, and send the resulting ciphertext to the is-

suer, accumulator or verifier, respectively, who will decrypt

it to obtain k . Then during the protocol execution, have all

outgoing messages encrypted under k . When receiving a

message, decrypt the message using k . If the decryption
algorithm outputs ⊥, abort the protocol. When the base

protocol finishes, output whatever the base protocol did

output.

It should be intuitively clear that this transformation does not

reduce the security of a BBA+ scheme, however, this is not-so-

obvious for the trapdoor linkability property, withoutwhich security
is not even defined. We state the following propositions with regard

to the encrypted scheme:

Proposition F.1 (Correctness, Informal). If the encryption
schemes used by the transformation given above are correct and the
base BBA+ scheme is correct, then the encrypted BBA+ scheme is
correct.

Proposition F.2 (Completeness, Informal). If the base BBA+
scheme is complete, then the encrypted scheme is complete.

Proof sketch: Let view be a view of one of the protocols Accum
of the encrypted scheme that ends with the issuer accepting the

protocol and outputting the hidden user id hid. Then, firstly, all
decryptions must have succeeded (because the issuer had aborted

otherwise) and, secondly, the base protocol must have accepted

with the decrypted messages. Then the decrypted messages of

the encrypted protocol are a view view′ that lets AC (of the base

protocol) output hid. Encrypting all messages in view′ with an

arbitrary honestly generated symmetric key k ← Gen(1n) and
prefixing an encryption of k under the issuer’s public encryption

key pkEnc yields a view of the encrypted scheme that lets AC (of

the encrypted protocol) output hid. The argument for views of the

Vfy protocol is analogous.

Proposition F.3 (Extractability, Informal). If the base scheme
is extractable, then the encrypted scheme is extractable.

Proof sketch: The ExtractUID algorithm of the base scheme can be

used without modification.

F.2 Owner-Binding with respect to Issue
We want to show that a BBA+ scheme BBAP secure according

to Theorem 4.3 is also secure according to Theorem E.1. To see

26

BBA+: Improving Privacy-Preserving Point Collection , ,

Experiment Expob-acc-mod
BBAP,A (n)

(CRS, td) ← Setup(1n)
(pkI , skI) ← IGen(CRS)
run AHonUser,HonIssue,HonAcc,HonVer,MalIssue,MalAcc,MalVer(CRS, pkI)
The experiment returns 1 iff A did a successful call to MalAcc or MalVer such that

ExtractUID applied hid that is part of the resulting outputs a public-key pk∗
U

for which

there has been no successful execution of MalIssue or HonIssue up to this MalAcc (or

MalVer) call.

Figure 24: Intermediary owner-binding experiment for
BBAP with respect to Accum.

this we must show that an attacker A in the security experiment

Expob-issue-fullBBAP,A from Fig. 19 can be transformed into an attacker B

in the simplified model (see Fig. 1). This is achieved as follows.

Let CRS, pkI , pkU be B’s input. B guesses the index of the

HonUser-query returning the pkU for which A will eventually

successfully runMalIssue. B then internally simulates A with in-

put CRS, pkI . When answering A’s HonUser queries, return the

challenge public key pkU on that query, and generate all other

user keys honestly. If the guess was correct, HonIssue, HonAcc and
HonVer queries for all other users can be simulated by running hon-

est executions of the respective protocol via the MalIssue, MalAcc
and MalVer oracles. User corruptions (for all users except the user
with the key pkU) can be dealt with by revealing the current token

as well as the respective skU to A. Furthermore, if B has guessed

the HonUser query correctly, then HonIssue, HonAcc, HonVer and
Corrupt queries for pkU are not allowed to A.

Thus, B wins the game Expob-issueBBAP,A from Fig. 1 if A wins the

game Expob-issue-fullBBAP,A and B has guessed the right HonUser call.

F.3 Owner-Binding with respect to Accum and
Vfy

We argue that if a “base” BBA+ scheme BBAP is secure according

to Theorem 4.4, then the encrypted version of that protocol (see

Appendix F.1) is secure according to Theorem E.2.

We introduce two additional “intermediate” security experi-

ments, see Fig. 24. In these security experiments A does not have

access to the Corrupt oracle. Furthermore, in the second interme-

diate experiment, the HonIssue, HonAcc and HonVer oracles do
not return the encrypted messages sent during an honest protocol

run, but return encryptions of uniformly random strings of the re-

spective lengths. (We denote these modified oracles by HonIssue′,
HonAcc′, HonVer′, respectively.)

Our high-level proof strategy is as follows: In a first step, we will

show that an attacker with non-negligible probability of winning

Expob-acc-fullBBAP,A against the encrypted scheme can be transformed into

two attackers B, C, at least one of which will win the first game

Expob-acc-mod
BBAP,A given in Fig. 24 with non-negligible probability. The

second step is to show that the security with regard to the first

intermediate game implies security wrt. the second intermediate

game by a hybrid argument using the security of the encryption

schemes. The third step is to show that an attacker that wins the

second intermediate game against the encrypted scheme can be

used to break the security of the base scheme wrt. Theorem 4.4.

We start with the first step. Observe that in experiment

Expob-acc-fullBBAP,A , the attackerA wins if he makes a successful (as seen

fromAC’s orV’s perspective) call toMalAcc orMalVer on a public
key pkU which fulfills one of two conditions:

(1) A has made neither a MalIssue- nor an HonIssue-query
for pkU

(2) A has made an HonIssue-query for pkU , but no Corrupt-
query.

Let E1 be the event that A wins the game with condition 1

fulfilled, and E2 be the event thatA wins with condition 2. Clearly,

Pr[E1]+ Pr[E2] = Pr[Expob-acc-fullBBAP,A = 1] =: ε , and thus Pr[E1] ≥ ε/2

or Pr[E2] ≥ ε/2.
We now construct an adversary B that will break Expob-acc-mod

BBAP,A
if Pr[E1] is non-negligible. B internally simulates the Expob-acc-fullBBAP,A
game. The HonUser, HonIssue, HonAcc, and HonVer oracles are
implemented by generating key-pairs withUGen, and honestly run-
ning the protocols via B’s MalIssue, MalAcc and MalVer oracles,
respectively. A’s MalIssue, MalAcc, and MalVer oracles are for-

warded to the Expob-acc-mod
BBAP,B experiment by B. The Corrupt oracle

is implemented by revealing the data honestly generated while sim-

ulating theHonUser,HonIssue,HonAcc andHonVer oracles.When

A terminates, winning the Expob-acc-fullBBAP,A game with event E1, then

B will also win the Expob-acc-mod
BBAP,B game, since A’s MalAcc/MalVer

call will have been forwarded by B to the Expob-acc-mod
BBAP,B game. The

key pk∗
U

extracted in this game will not have been used by B in a

call to itsMalIssue oracle, since B only uses itsMalIssue oracle for
keys that A submits to its HonIssue or MalIssue oracles, and (by

the definition of event E1) A has never used the public key pk∗
U

with these oracles.

We construct a similar attacker C for the case where Pr[E2] is
non-negligible. C guesses a random index i for a HonUser query
by A. When A makes its i-th call to the HonUser oracle, then C
calls its own HonUser oracle, stores the resulting public key pkU
and returns it to A. On all other queries to the HonUser oracle,
C proceeds as B did: it generates the respective keys itself. For

the stored key pkU , the HonIssue, HonAcc, HonVer oracles are
simulated using C’s respective oracle. For all other user public

keys, C honestly runs the respective protocol over its MalIssue,
MalAcc andMalVer oracle. IfA calls Corrupt with the key pkU , C

aborts.WhenCorrupt is called for another user public key,C reveals
the most recent token as well as the secret key to A. C forwards

MalIssue, MalAcc and MalVer calls by A to its own respective

oracle.

Note that if Pr[E2] ≥ ε/2, then A must make a MalAcc call

where ExtractUID yields a public key pk∗
U

returned by theHonUser
oracle, which has never been usedwith theCorrupt oracle. If pkU =
pk∗
U

(which happens with non-negligible probability), then C does

not abort, and wins the Expob-acc-mod
BBAP,C game. This concludes the

first step of our proof strategy.

We now continue with the second step: We need to show that an

adversary A (which may be one of the attackers described above,

but might be completely independent of these as well) against an en-

crypted scheme in the first Expob-acc-mod
BBAP,A game can be used to build

an attacker B against the same scheme in the second Expob-acc-mod
BBAP,B

27

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

game, where the HonIssue, HonAcc and HonVer oracles return
encryptions of random strings instead of encrypted protocol mes-

sages.

We show that an adversary A’s success probability can differ

at most negligibly between these games by a hybrid argument,

reducing to the security of the two encryption schemes: symmetric

encryption scheme used for sending base protocol messages and the

asymmetric encryption scheme used for transmitting the symmetric

key.

Assume that an attacker A’s success probabilities in the two

Expob-acc-mod
BBAP,A games differ by a non-negligible function. Let q be

an upper bound on the total number of HonIssue, HonAcc and

HonVer calls by A. We define 2q + 1 hybrid games as follows: In

the hybrids 0 ≤ i ≤ q, calls to the HonIssue, HonAcc and HonVer
return transcripts of honest protocol executions, with the exception

that during the first i calls, the (asymmetric) encryption of the sym-

metric key is replaced by an encryption of another independently
selected random symmetric key. The symmetric ciphertexts are

kept without modifications. (Thus, while the base protocol mes-

sages are encrypted under some key k0, the initial message will

contain an encryption of a key k1, which will differ from k0 with
high probability.) Thus, in hybrid q, while the base protocol mes-

sages are encrypted under up to q random symmetric keys, all

encryptions of the symmetric keys under the issuer’s public key

have been replaced by encryptions of independent random keys.

This changes in the following hybrids: In the hybrids q ≤ q+i ≤ 2q,
additionally, the ciphertexts of the base protocol messages of the

first i calls to HonIssue, HonAcc and HonVer are replaced by en-

cryptions of random strings. Thus, in hybrid 2q, all ciphertexts
returned by the HonIssue, HonAcc and HonVer oracles have been
replaced by encryptions of random data.

Clearly, the 0-th hybrid is equal to the first Expob-acc-mod
BBAP,A game,

whereas hybrid 2q is equal to the second Expob-acc-mod
BBAP,A game.

Now, if there is a non-negligible difference between the two

Expob-acc-mod
BBAP,A games, there must be an i such that there is a non-

negligible difference between hybrid i and hybrid i − 1.
We show that this non-negligible difference can be exploited to

break the security of (one of) the underlying encryption schemes.

More precisely, we construct two attackers D1, D2 against the

IND-CCA2 security of the asymmetric and symmetric encryption

schemes, respectively. We then show that at least one of these two

attacker must have a non-negligible advantage in the IND-CCA2

game if the difference of hybrids i and i − 1 is non-negligible.
Assume that there is a non-negligible difference between hybrids

i and i − 1 for i ≤ q. We construct a distinguisher D1 in the IND-

CCA2 game against the public key encryption scheme employed.

D1 receives a public key of an encryption scheme pkEnc as input,
and generates a CRS, and a BBAP key pair (pkI, skI) as in experi-

ment Expob-acc-mod
BBAP,A . It includes its challenge public key pkEnc in the

issuer’s public key of the encrypted BBA+ protocol and passes the

resulting key toA, along with the CRS. It then internally simulates

A.

The HonUser oracle is implemented by D1 choosing a random

key pair (pkU, skU) ← UGen(CRS) and returning pkU . For the
first i − 1 calls by A to one of the HonIssue, HonAcc or HonVer
oracles, D1 simulates an honest execution of the respective (base)

protocol (recall thatD1 knows skU , skI and themost recent token),

encrypts all messages under a randomly selected symmetric key

k0, encrypts another randomly selected symmetric key k1 under
pkEnc, and sends all ciphertexts toA. For the i-th call, D1 runs the

respective protocol as well, encrypts all base protocol messages

under a randomly chosen key k0, and outputs the chosen symmetric

key k0 asm0, and another randomly selected symmetric key k1 as
m1 to the IND-CCA2 game. It then returns its challenge ciphertext

c∗ along with the encryptions of all base protocol messages to A.

For all later calls, D1 simulates the encrypted protocol without

modifications.

Whenever A makes a call to MalIssue, MalAcc or MalVer, D1

uses its decryption oracle to decrypt the initial message sent by A,

thereby obtaining the symmetric key k used for the base protocol

messages. (If the initial message matchesD1’s challenge ciphertext

c∗, D1 continues as if the decryption oracle had returned k := k0.)
It then uses that key to decrypt the messages sent via the oracles,

uses the (self-generated) skI to simulate the issuer side of the base

protocol, and encrypts its answers with k and sends them back

to A.

D1 outputs whatever the respective hybrid game would output.

By construction, D1 simulates either hybrid i − 1 or hybrid i for
A. Since A’s success probabilities in winning these two hybrids

differ non-negligibly (by assumption), D1’s success probability in

winning the IND-CCA2 game is non-negligible.

Now assume that A’s success probabilities in two hybrids q + i
and q + i − 1 differ (for some i ∈ {1, . . . ,q}) by a non-negligible

amount. We construct an attacker D2 in the multi-message IND-

CCA2 game (where the attacker may output two vectors of mes-

sages) against the symmetric encryption scheme employed. D2

generates (CRS, td) ← Setup(1n), (pkI, skI) ← IGen(CRS),
gp← SetupGrp(1n) and (pkEnc, skEnc) ← Gen(gp). Furthermore,

it chooses a “substitute” symmetric key ks . It then internally simu-

lates A with input (CRS, (pkI, pkEnc)).
A’s HonUser oracle is implemented as before: by randomly

selecting a key-pair (pkU, skU) ← UGen(CRS). The HonIssue,
HonAcc and HonVer oracles are implemented as follows. Upon the

first i invocations, D2 simulates the execution of the respective

base protocol, selects two random symmetric keys k0,k1, encrypts
k0 under pkEnc and encrypts random strings of the same lengths as

the protocol messages under k1, and returns the ciphertexts to A.

Upon the i-th invocation, D2 simulates the respective protocol of

the base scheme, and stores all resulting messages. It then outputs

the vector of these messages as one part of its challenge, and a

vector of random strings of the same lengths as its second part of

the challenge. When it receives the vector of challenge ciphertexts

c∗, it returns these encrypted messages, along with an encryption

of the “substitute” key ks under pkEnc. For all later invocations,D2

simulates the base protocol, encrypts the messages under a random

symmetric key k0, encrypts another randomly selected symmetric

key k1 under pkEnc, and returns the ciphertexts to A.

When A makes a query to the MalIssue, MalAcc or MalVer
oracles, D2 decrypts the symmetric key sent by A using skEnc. If
it does not match the substitute key ks , thenD2 computes the next

protocol message sent by I, AC orV , respectively, using skI . If
the symmetric key matches ks , however,D2 checks if the respective

28

BBA+: Improving Privacy-Preserving Point Collection , ,

message sent by A is one of its challenge ciphertexts contained in

c∗. If it is, D2 continues as if it had decrypted the ciphertext to the

message of the base protocol that D2 stored while simulating the

i-th invocation of an HonIssue, HonAcc or HonVer oracle. If the
ciphertext does not match any of D2’s challenge ciphertexts, D2

decrypts it using its decryption oracle. Once D2 has “decrypted”

the ciphertext in one way or another, it simulates the respective

protocol of the base scheme using skI . The resulting answer is

encrypted as follows: If the symmetric key used matches ks , D2

uses its encryption oracle. If the symmetric key differs from ks ,
then D2 uses the regular symmetric encryption algorithm with the

key sent by A.

By construction,D2 simulates either hybridq+i−1 or hybridq+i
for A. Since A success probabilities in winning these two hybrids

differ non-negligibly (by assumption), D2’s success probability in

winning the multi-message IND-CCA2 game is non-negligible.

This concludes the second step of our proof: Using the hybrid ar-

gument, we have shown thatA’s success probability in the hybrids

0 and 2q (which equal the two variants of the Expob-acc-mod
BBAP,A game),

differ on non-negligibly if both encryption schemes are IND-CCA2

secure.

Finally, we move to the third step of our proof sketch. We con-

struct an adversary B in the Expob-accBBAP,B game against the base
scheme that simulates A in the second intermediate experiment

with the encrypted scheme. B internally generates an encryption

key pair (pkEnc, skEnc), augments its input pkI with pkEnc and

hands the resulting pk′
I
to A. When A queries the HonUser ora-

cle, B generates a random key pair (pkU, skU) and returns pkU .
Upon HonIssue, HonAcc, or HonVer queries, B returns transcripts

that contain encryptions of random symmetric keys k under pkEnc
and encryptions of random strings under independently selected

symmetric keys k ′. A’s MalIssue, MalAcc and MalVer queries are
decrypted with skEnc, and the decrypted messages are then passed

on to the Expob-accBBAP,B game by B. The answers of B’s oracles are

encrypted by B and then returned to A. With this setup, B per-

fectly simulates the second intermediate game for A. Furthermore,

B wins the Expob-accBBAP,B game if A wins the second intermediate

game.

This concludes the proof for the third step of our proof sketch,

and thus our proof sketch as a whole.

F.4 Balance Binding
LetA be an adversary in the Expbb-fullBBAP,A experiment. We construct

an adversary B, winning the ExpbbBBAP,B experiment with the same

success probability as A: B internally simulates the Expbb-fullBBAP,A
experiment for A. When A makes a call to one of the MalIssue,
MalAcc orMalVer oracles, B just passes the messages on without

modification. When A uses the HonUser oracle, B generates a

key pair with (pkU, skU) ← UGen, stores skU for later use and

returns pkU . On a HonIssue, HonAcc or HonVer query by A, B

executes the respective protocol via its ownMalIssue,MalAcc or
MalVer oracles honestly, stores the results (i.e., the updated token)

and then returns the transcript of all exchanged messages to A. If

A makes a query to the Corrupt oracle, B returns the respective

secret key along with the most recent token for that user.

If A wins the game, then (by definition) A must have made a

MalVer call which returned a serial number s∗ which was never

returned before, and in which A claimed a wrong balance. Let S
be the set of serial numbers s returned by B’s MalAcc and MalVer
oracles, SHon be the set of serial numbers s returned by B to A on

calls to the HonAcc or HonVer oracles, and s
Mal

be the set of all s
returned by B onA’s calls to theMalAcc andMalVer oracles. Then
(by construction of B) we have S = SHon ∪SMal

. Thus, if s∗ was not
returned toA before (which means s∗ < SHon ∪ SMal

), then, clearly,

s < S , so s∗ was never returned to B as well. Furthermore, since the

ExtractUID algorithms are guaranteed to return the input key pkU
on honest protocol executions, B’s simulation of the HonAcc and
HonVer oracles does not falsify the set VpkU from Fig. 3. Thus, B

has the same success probability in winning the ExpbbBBAP,B game

as A in the Expbb-fullBBAP,A game.

F.5 Double Spending Detection
Assuming an adversary A with non-negligible success probabil-

ity in the Expdsd-fullBBAP,A game, we construct an adversary B in the

ExpdsdBBAP,B game that has at least the same success probability. B

internally simulates the ExpdsdBBAP,A game forA.A’s oracle queries

are answered exactly as in Appendix F.4. Now, assume that A has

done two MalAcc/MalVer queries that fulfill the conditions stated
in Fig. 22. Since the MalAcc/MalVer queries of B are a superset

of A’s MalAcc/MalVer queries, and the conditions are identical in

both experiments, B must also win the ExpdsdBBAP,B game.

F.6 Framing Protection
An attacker A in the ExpfacpBBAP,A can be transformed into an at-

tacker B game, in a way that B’s success probability equalsA’s: B

receives a CRS and a user public key pk∗
U

as input, and forwards

CRS toA, which will output an issuer public key pkI that B stores

for later.

B guesses a random index i for an HonUser query by A. On

A’s i-th HonUser query B returns pk∗
U
. On all other HonUser

queries B calls its own HonUser oracle. A’s HonIssue, HonAcc,
and HonVer calls are passed through to B’s oracles. A’s Corrupt
queries are passed through as well, except if A calls Corrupt on
input of pk∗

U
: In this case, B will abort.

If B has correctly guessed the index i of A’s HonUser query
returning the user public key that A outputs in the end, and A

wins the Expfacp-fullBBAP,A game then A must not have made a Corrupt
call on input of pk∗

U
, and thus B will not abort. Furthermore, in

this case, B can output the previously stored pkI and A’s proof Π

to win the ExpfacpBBAP,B game.

G RANGE PROOFS
There are a variety of applications where it might be desirable not

to publish the current balancew ∈ Zp during the verification and

redemption phase. To overcome this issue our protocol could be

extended by a range proof system such as [14] or [11]. Although

there has been great progress to increase the efficiency of those

proof systems, we deliberately did not include such a proof in our

basic scheme, as we are convinced that those range proofs are still

29

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

too inefficient for practical deployment on low-end hardware like

mobile devices. Nonetheless, we implemented such a range proof

and will give some concrete numbers in this appendix.

G.1 High Level Overview
We roughly explain the idea of the range proof in [11]. Firstly, we

recap the trivial approach to prove that a balancew is at least the

redeemed value v , i. e. w ∈ S := {v, . . . ,Nmax} whereby Nmax

denotes the biggest integer that can be represented. The verifier

generates a signature on every element of S and the prover proves

in ZK that it knows a signature on its balancew . Obviously, this ap-

proach is prohibitive if |S| ∝
��Zp �� for p ∈ Θ(poly(1n)) as this yields

an exponentially large set S and therefore number of signatures.

In [11] Camenisch et al. exploit a q-nary representation of the

secretw with at most ηmax digits to overcome this problem. Hereby,

q,ηmax ∈ N are design parameters that are chosen during sys-

tem setup such that qηmax ≤
��Zp ��. For a fixed q the maximal ad-

missible number of digits ηmax that provides a representation for

most secrets s ∈ Zp is ηmax ≤ ⌊logq p⌋ ∈ O(n). Now, the verifier

must only generate q signatures on each element in {0, . . . ,q − 1},
the prover generates an q-nary representation of the secret s =∑η−1<ηmax−1

j=0 sjq
j
and then proves for each digit sj (j ∈ {0, . . . ,η −

1}) that the digit is contained in the set {0, . . . ,q − 1}, i. e. that it
knows a signature for it.

Please note that this range proof is only applicable to a Zp -subset
whose size is a power of q. E. g. depending on the tangible choice

of q and ηmax there are

��Zp �� − qηmax
elements of the prime-order

group that elude a q-nary representation. In practical terms this

means that only a subset of Zp can be used and “illegal” balances

have to be avoided by the protocol. (See discussion in the next

subsection.) Although cleartext balances are restricted to a much

smaller domain, this does not weaken security as randomness and

therefore ciphertexts/commitments are still varying over the whole

range.

Moreover, the basic range proof only allows to show that a secret

s can be represented with η ≤ ηmax digits, i. e. that s ∈ {0, . . . ,q
η −

1} holds. Butwe need to prove a statementw ∈ {v, . . . ,Nmax} about

a secretw and usually neither interval limit is located at a q-power.
The idea is to suitable shiftw and proof a q-nary representation of

the shifted value. In order to overcome the issue with non-aligned

interval limits the prover conducts two range proofs and shows

that the shifted value lies in two different intervals whose limits

are aligned and whose intersection is the claimed range. For details

on the actual calculation see the section after the next.

G.2 Design Choices and Notation
Efficient range proofs heavily depend on the representation of the

elements with individual digits and then proofing statements about

the digits in zero-knowledge. This representation leaves space for

some design decisions. The design parameters q and ηmax are a

trade-off between the number of signatures and the size of the NIZK

statement. Please note, that the signatures can be pre-computed

and re-used for all NIZKs. Hence, a greater q and a smaller ηmax is

usually beneficial.

In the BBA+ scheme, the accumulation valuev and the balancew
are elements of the prime-order group Zp . We fix the representation

Zp = {0, . . . ,p − 1} ⊂ N, (34)

i. e. we interpret elements of Zp as positive numbers with the usual

≤-order inherited fromN. This also implies that we keep the Accum
and Vfy algorithms separated. We accumulate points by addition

of positive numbers and redeem points by subtraction of positive

numbers. We do not perform a range check for accumulation, but

only check if the redeemed points v are smaller than the current

balance w , e. g. if the user does not overdraw its account. If an

accumulation results in an overflow and thus in a smaller balance,

we regard that as the user’s problem.We consider a plus of points as

beneficial to the user and the user who knows its previous balance

and the accumulation value should have obviate this problem before

engaging in the Accum protocol.

We choose

2 ≤ q ≤ p − 1 (35)

as the base of the q-nary representation. The maximum number of

digits to represent values in Zp is set to

ηmax ≤ ⌊logq p⌋. (36)

Hence, the biggest integer that can be represented equals

Nmax := qηmax − 1. (37)

Note that this means that the elements {Nmax + 1, . . . ,p − 1} ⊂

Zp cannot be represented by the positional number system and

thus are “illegal” elements. We again argue that it is the user’s

responsibility to ensure that an execution of Accum does not result

into an illegal balance. Similar to the issue with the wrap-around

the user is harmed, because it will possess a broke token afterwards

and cannot successfully prove statements about its balance during

Vfy. The user should avoid this situation of its own accord.

Moreover, for the ease of later notation we denote the first ηmax

q-powers of д1 by

Q j := д
(q j)
1

for j = 0, . . . ,ηmax − 1. (38)

These constants are an Fgp-mapping of all relevant magnitudes of

the positional digit system. Please note that whenever any con-

stant Q j appears in a formula the party can compute д
(q j)
1

by itself.

However, in the security proof the simulator of the NIKZ needs to

know the discrete log, i. e. the constants are part of its hint hint. In
practice, it might be even beneficial to pre-compute Q j and include

them into the CRS such that they can be looked up quickly when

needed.

The system constants q, ηmax, Nmax and (optionally) Q0, . . . ,

Qηmax−1 are included in the global CRS.

Alternative design choice. Alternatively, we could choose to use

the representation Zp =
{
−
p−1
2
, . . . , 0, . . . ,

p−1
2

}
and allow nega-

tive numbers. Then the Accum and Vfy protocols could be unified

using a two-sided range proof and regarding redemption as the

accumulation of negative points. In this case the maximum number

of digits is ηmax ≤

⌊
logq

(
p−1
2

)⌋
plus an additional sign bit.

30

BBA+: Improving Privacy-Preserving Point Collection , ,

G.3 Concrete Range Proof
As already stated we want to proof w ∈ {v, . . . ,Nmax} and need

to shift the values such that the interval limits fit into the proof

scheme. In preparation let η ∈ [ηmax] be defined as

η := ⌊logq (Nmax −v)⌋ + 1 ⇔ qη−1 ≤ Nmax −v < qη (39)

and

N := qη − 1, (40)

i. e. N + 1 is the smallest q-power greater than Nmax −v . It follows

w ∈ {v, . . . ,Nmax}

⇔ Nmax −w ∈ {0, . . . ,Nmax −v}

⇔ Nmax −w ∈ {0, . . . ,N } ∩ {Nmax −v − N , . . . ,Nmax −v}

⇔

{
Nmax −w ∈ {0, . . . ,N } ∧

N +v −w ∈ {0, . . . ,N }

⇔


∃ w ′

0
, . . . ,w ′η−1 ∈ {0, . . . ,q − 1} : Nmax −w =

η−1∑
j=0

w ′jq
j

∃ w ′′
0
, . . . ,w ′′η−1 ∈ {0, . . . ,q − 1} : N +v −w =

η−1∑
j=0

w ′′j q
j

(41)

In the BBA+ scheme the user proves that it has created a random-

ized version of a signed commitment to its balance and that both

commitments open to the same value. Openings of commitments

are elements from the implicit message spaceM ′. For this reason

w is not directly part of the witness but an Fgp-mappingW = дw
1

and equation (41) translates into a statement about group elements.

For an Fgp-mapped balanceW ∈ G1 the user must prove

∃ w ′
0
, . . . ,w ′η−1 ∈ Zp :W

η−1∏
j=0

Q
w ′j
j = д

Nmax

1
(42)

∃ w ′′
0
, . . . ,w ′′η−1 ∈ Zp :W

η−1∏
j=0

Q
w ′′j
j = дN+v

1
(43)

using Q j ∈ G1 as defined by equation (38). These are MSEs and

therefore fit into our Groth-Sahai proof system.

Note, that in contrast to (41) the equations (42), (43) make a

statement about exponentsw ′j ,w
′′
j in Zp and not in {0, . . . ,q − 1}.

Hence, the user must additionally prove thatw ′j ,w
′′
j are valid digits,

i. e. actually elements in {0, . . . ,q}. The user shows for each digit

that it knows a suitable signature σi that has been issued before.

For each digit i ∈ {0, . . . ,q − 1} let

σi := Sgn(sksig,д
i
2
) (44)

be a corresponding signature. Then the user must prove

∀ j ∈ {0, . . . ,η − 1} :

Vfy(pksig,д
w ′j
2
,σw ′j) = 1 ∧ Vfy(pksig,д

w ′′j
2
,σw ′′j) = 1. (45)

These expand into two PPEs each. In summary, including a range

proof expands the NIZK by 2MSEs for correctness of representation

and 4η PPEs for correctness of the digits.

IGen(CRS)
(pksig, sksig) ← S.Gen(CRS)

for j = 0 to q − 1 do σj ← S.Sgn(sksig, д
j
2
)

return (pkI , skI) := ((CRS, pksig, σ0, . . . , σq−1), sksig)

Figure 25: Augmented Issuer Key Generation

G.4 System Setup
The key generation for the issuer must be augmented such that it

additionally generates a signature σi for each digit i ∈ {0, . . . ,q−1}
as in eq. (44). We include these signatures into its public key pkI .
See Fig. 25 for the augmented Issue algorithm.

G.5 Verify and Redeem
In the simple verify-and-redeem protocol Vfy the current balance

w of the token was made public and part of the statement. For

convenience, we recap the language L
3,pkI of the simple verify-

and-redeem protocol.

L
3,pkI

=



(c′, (S , t , u2), hid,W)

����������������������

∃ c , σ ∈ G2 ;

pkU ,U1, D , S′,U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S ,W , pkU ,U1), c , D) = 1

C.Open(CRScom, (S′,W , pkU ,U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

,U1 = д
u
1

1
, t = skUu2 + u1


(46)

In the augmented verify-and-redeem protocol the redeemed value

v — that is known to both parties anyway — becomes part of

the statement and the user proves in zero-knowledge that w ∈
{v, . . . ,Nmax} holds. Due to a technical subtlety, we do not have

one language but ηmax languages with a varying number of con-

straints. Before the zero-knowledge proof the userU and verifier

V have to calculate an η ∈ [ηmax] according to eq. (39) and then

31

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

Table 2: Parameter Settings for Range Proofs

Parameter Value

q 16

ηmax 4

Nmax 65535

select the “correct” language L′
3,pkI ,η

.

L′
3,pkI ,η

=



(c′, (S , t , u2), hid, v)

���

∃ c , σ ∈ G2 ;

W , pkU ,U1, D , S′,U ′
1
, D′ ∈ G1 ;

skU , u1, r ∈ Zp ;

w′
0
, . . . ,w ′η−1,w

′′
0
, . . . ,w ′′η−1 ∈ {0, . . . , q − 1} :

E.Enc(pkT , pkU ; r) = hid

C.Open(CRScom, (S ,W , pkU ,U1), c , D) = 1

C.Open(CRScom, (S′,W , pkU ,U ′
1
), c′, D′) = 1

S.Vfy(pksig, σ , c) = 1

pkU = д
skU
1

,U1 = д
u
1

1
, t = skUu2 + u1

W
∏η−1
j=0 Q

w′j
j = дNmax

1

W
∏η−1
j=0 Q

w′′j
j = дN+v

1

S.Vfy(pksig, σw′
0

, д
w′
0

2
) = 1

.

.

.

S.Vfy(pksig, σw′η−1
, д
w′η−1
2

) = 1

S.Vfy(pksig, σw′′
0

, д
w′′
0

2
) = 1

.

.

.

S.Vfy(pksig, σw′′η−1
, д
w′′η−1
2

) = 1


(47)

We shortly highlight the differences: In line 2 of Eq. (47) the Fgp-
mappingW of the current balance becomes part of the witness

(this is a reminiscence of the Accum-protocol). In line 4 2η digits

w ′j andw
′′
j (j ∈ {0, . . . ,η − 1}) are included into the witness. Line

10 and 11 actually prove that an equation of the balancew and the

redemption value v have a certain digit representation. The last 2η
lines prove that the digits w ′j and w

′′
j are indeed valid digits, i. e.

that they are in the range {0, . . . ,q − 1} by showing that the user

knows a valid signature for each of them.

The augmented Vfy protocol is depicted in Fig. 26.

G.6 Performance Evaluation
For our implementation we decided for the parameters as in Table 2.

Using a hexadecimal number system with at most four digits results

into 16 additional signatures during the setup phase and 2 additional

MSEs plus at most 16 PPEs for the NIZK in the Vfy protocol.

H APPLICATIONS AND FUTUREWORK
In this work, we have introduced Black-Box Accumulators as a

general-purpose building block for higher-level applications. In this

section, we give some example applications, and explain how BBA

schemes can be used in the respective scenario. In some applications,

it would be beneficial to use a slightly modified version of BBAs

than we have introduced them here. We explain the modifications

below.

U(pkI , pkU , skU , τ ,w , v) V(pkI , skI , v)

u2 ← Zp

u2

parse (c , d , σ , s , u1) := τ

t := skUu2 + u1 mod p

r , s′, u′
1
← Zp

hid := E.Enc(pkT , pkU ; r)

(c′, d ′) := C.Com(CRScom,

(s′,w , skU , u
′
1
))

η := ⌊logq (Nmax − v)⌋ + 1

N := qη − 1

Calculate w ′
0
, . . .w ′η−1 ∈ {0, . . . , q − 1} s. t.

η−1∑
j=0

w ′jq
j = Nmax −w

Calculate w ′′
0
, . . .w ′′η−1 ∈ {0, . . . , q − 1} s. t.

η−1∑
j=0

w ′′j q
j = N + v −w

x := (c′, (дs
1
, t , u2), hid, v)

wit := (c , σ , дw
1
, pkU , д

u1
1

, d ,

дs
′

1
, д

u′
1

1
, d ′, skU , u1, r ,

w ′
0
, . . .w ′η−1,w

′′
0
, . . .w ′′η−1)

π = P3η .Prove(CRSpok, x , wit)

c′, s , t , π , hid

z := (t , u2)

dstag := (s , z)

η := ⌊logq (Nmax − v)⌋ + 1

x := (c′, (дs
1
, t , u2), hid, v)

if P3η .Vfy(CRScom, x , π) = 0

return (⊥, 0)

s′′ ← Zp
(c′′, 1) := C.Com(CRScom,

(s′′, −v , 0, 0); 0)

c∗ := c′′ · c′

σ ∗ = S.Sgn(sksig, c∗)

c∗, σ ∗, s′′

s∗ := s′ + s′′ mod p

d∗ := d ′

w∗ := w − v

u∗
1
:= u′

1

τ ∗ := (c∗, d∗, σ ∗, s∗, u∗
1
)

if UVer(pkI , pkU , skU , τ
∗,w∗) = 0

return (⊥, 0)

else return(τ ∗, 1) return (dstag, hid, 1)

Figure 26: Augmented Verification and Redemption Proto-
col

H.1 Applications
H.1.1 Customer Loyalty Systems. As a basic application we out-

line how Black-Box Accumulators can be used to create a customer

loyalty system where individual transactions are unlinkable, thus

retaining the customer’s privacy. When the operator starts a loyalty

program, he asks a trusted third party to generate aCRS by running
Setup. The trusted third party then publishes the CRS and securely

erases the trapdoor. The operator may then generate a key pair

(pkI, skI) ← IGen(CRS) and publishes pkI .
When a customer registers with the loyalty program, he gener-

ates a user key pair (pkU, skU) ← UGen(CRS), and executes the

Issue protocol with the operator to obtain a token. The operator

32

BBA+: Improving Privacy-Preserving Point Collection , ,

verifies the name and address of the user and stores this informa-

tion together with pkU . The owner-binding property wrt. Issue
guarantees that it is hard to register a public key pkU without

knowing skU , i. e., only a user who knows skU can register pkU .
When the customer purchases a product or service, he executes

theAC protocol with the operator, wherev is the number of points

that the customer receives. When the customer wants to redeem

some points (say, v ′ ∈ N), he unveils his current balancew to the

operator, who checks thatw ≥ v ′. The parties then execute the Vfy
protocol with v = −v ′. The balance-binding property prevents a

user from unveiling an incorrect balance.

In order to detect double-spending of collected points, the op-

erator regularly scans his database for double-spending tags with

identical serial numbers. If there are some, he runs IdentDS in order
to obtain the public key pkU of the user who committed double-

spending and a proof of guilt Π. He then looks up the name and

address of the user with key pkU and can contact him about this

issue. In case the user denies the double-spending, the operator can

convince anyone of the double-spending with the proof Π.
Here, the onwer-binding property wrt. Accum and Vfy makes

sure that only tokens can be used that are bound to key pkU that

has been registered before. Furthermore, the double-spending de-

tection property guarantees that a) the public key pkU of the user is

uniquely determined, b) the IdentDS algorithm returns the correct

key pkU , and c) the proof Π will in fact convince any third party.

Moreover, the false-accusation protection offered by the BBA+

scheme makes sure that an operator can not produce convincing

proof of guilt Π for a user that did not commit double-spending.

Finally, while the user is not perfectly anonymous (because he

registered with his name and address), his privacy is nonetheless

well-protected, due to the privacy property of the BBA+ scheme:

Since the operator’s views of transactions are computationally indis-

tinguishable from views that are independent of the real user pub-

lic keys, these transactions are computationally unlinkable. Thus,

while the operator knows all transactions and the corresponding

goods and services traded in each, he can not tell which transactions

belong to the same user. Thus, it is intractable to create personalized

profiles of users which may reveal sensitive personal information.

H.1.2 Vehicle to Grid Power Transfer. As theworld slowlymoves

toward more ecologically friendly, renewable and natural sources of

energy, the problem of storing large amounts of energy is emerging.

For example, the supply of solar andwind power depend on external

circumstances, and thus energy harvested from these sources must

be stored in order to have energy when the supply is low, e. g. at

night.

One approach for storing this energy is to use the batteries of

electric cars while they are parked. This is known as vehicle-to-grid

power transfer, and involves micro-trading. In this setting, Black-

BoxAccumulators can be used to realize the transfer of money. Here,

a provider of electricity takes the role of the issuer, accumulator and

verifier, respectively. The car owner (or his car, acting autonomously

on behalf of him) is a user. When the supply of energy is low and the

car has sufficient energy in its battery, the car will autonomously

sell energy from its battery to the energy provider, and run the

Accum protocol to collect points or credit in return. When the

supply of energy is high and the car’s battery is low, the car may

buy power from the provider, and pay by redeeming previously

collected points using Vfy. When the points collected by the car

are drained, the user may buy additional points (using cash, bank

transfer or another commonplace payment method) to charge is

token. Likewise, when the car has accumulated a large number of

points, the car owner may then redeem the points collected by his

car, in order to get paid for the electricity his car has provided.

H.1.3 Stored-Value Card Systems. A common application of so-

called stored-value card systems is public transportion, where users

present a smartcard upon entering or leaving the transportation

system (or both), and the smartcard-based system replaces a tra-

ditional ticket-based system. In these systems, each smartcard is

linked to a virtual wallet that contains a certain amount of money.

Money is withdrawn from the wallet for using the transportation

system, and the wallet can be refilled at automated vending ma-

chines in exchange for a classical payment in cash or via credit

card.

Using Black-Box Accumulators analogously to the ways de-

scribed above, one may create a stored-value card system where

the wallet is actually stored on the card being used, while still guar-

anteeing that (a) the card’s stored value can not be manipulated,

(b) double-spenders can be identified, and (c) nothing is leaked

beyond the card’s current value.

In the scenario of public transportation described above, it is

likely that users will charge their token once and then repeatedly

pay small amounts using the Vfy protocol, each time revealing their

current balance. One might therefore raise the argument that there

is a certain risk that users may be tracked by their balance. However,

we believe that this will be hard to conduct in practice, since most

users will have balances within a certain range. Furthermore, as

stored-value card systems are usually deployed in metropolitan

areas, we expect the number of persons having the same balance

to be quite large. Thus, since the balance is the only information

leaked to the Verifier, tracking users will be very hard.

H.1.4 Anonymous Reputation Systems. Anonymous reputation

systems are systems where users can collect points for positive rep-

utation, e. g. in public support forums or in a participatory sensing

context, and users with higher reputation can access or use desig-

nated services reserved for well-reputed users. Applying Black-Box

Accumulators to this problem is analogous to the aforementioned

applications.

H.2 Active Adversaries
In the security model described in Section 4.3, we consider adver-

saries that may arbitrarily deviate from the protocol in order to

achieve their goals. In Appendix E, we give an extended security

model, where the adversary may additionally eavesdrop on proto-

col executions of honest users in several security experiments. We

prove that if a BBA+ scheme satisfies the simpler security model

from Section 4.3, then an encrypted version of that scheme satisfies

the extended definition. Thus, these two security models are mostly

equivalent.

However, even in our extended security model, the adversary

is passive with respect to honest users, i. e. he may not tamper

with protocol executions of honest users. While we believe this is

33

, , G. Hartung, M. Hoffmann, M. Nagel, A. Rupp

a realistic model for several of the applications mentioned above,

where the user and the issuer are often in direct contact with each

other, it may be insufficient when communication is done indirectly.

We therefore consider it interesting to extend our model to ad-

versaries that are not restricted to passively eavesdrop on honest

users, but that may additional arbitrarily tamper with their com-

munication as a man-in-the-middle. However, we leave extending

our model to such “active” adversaries as future work.

34

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Work

	2 Preliminaries
	3 Building Blocks
	4 BBA+ Definition
	4.1 High-Level System Description
	4.2 Formal System Definition
	4.3 System Security
	4.4 User Security and Privacy

	5 A BBA+ Instantiation
	5.1 Building Blocks
	5.2 Protocol Description

	6 Performance Evaluation
	6.1 Bilinear Groups
	6.2 Prover-Chosen CRS
	6.3 Implementation Results
	6.4 Further Optimization

	References
	A Correctness for BBA+ Schemes
	B Formal Definitions and Instantiations of Building Blocks
	B.1 Symmetric and Asymmetric Encryption
	B.2 Digital Signatures
	B.3 Fgp-binding Commitments
	B.4 Fgp-extractable NIZKs

	C System Security Proofs
	D User Security and Privacy Proofs
	E Full-Fledged Security Model
	E.1 System Security
	E.2 User Security and Privacy

	F Relation Between Our Security Models
	F.1 Extending security by encryption
	F.2 Owner-Binding with respect to Issue
	F.3 Owner-Binding with respect to Accum and Vfy
	F.4 Balance Binding
	F.5 Double Spending Detection
	F.6 Framing Protection

	G Range Proofs
	G.1 High Level Overview
	G.2 Design Choices and Notation
	G.3 Concrete Range Proof
	G.4 System Setup
	G.5 Verify and Redeem
	G.6 Performance Evaluation

	H Applications and Future Work
	H.1 Applications
	H.2 Active Adversaries

